

 Planet Perl

 Text: [s]how / [h]ide

 Sources

 blogs.perl.org

 CPAN Security Group

 dev.to #perl

 domm (Perl and other tech)

 End Point Dev blog Perl topic

 MetaCPAN News

 Niceperl

 nxadm

 Perl Advent Calendar 2023

 Perl commits on GitHub

 Perl Foundation News

 Perl Hacks

 Perl Maven

 Perl on Medium

 Perl questions on StackOverflow

 Perl-Academy.de

 perl.com

 Perlancar

 Personal blog of Bigfoot (Perl & Tech)

 Personal blog of Flavio Poletti (Perl & Raku)

 r/perl

 RabbitFarm Perl

 rjbs forgot what he was saying

 The Perl and Raku Conference YouTube channel

 The Perl NOC

 The Weekly Challenge

 [image: Web feed] Web feed

 [image: OPML] OPML

	Powered by Perlanet
	Code on Github
	Feedback welcome

 Perl Weekly Challenge 264: Greatest English Letter

blogs.perl.org

 Published by laurent_r
 on Tuesday 09 April 2024 17:39

 These are some answers to the Week 264, Task 1, of the Perl Weekly Challenge organized by Mohammad S. Anwar.

Spoiler Alert: This weekly challenge deadline is due in a few days from now (on April 14, 2024 at 23:59). This blog post provides some solutions to this challenge. Please don’t read on if you intend to complete the challenge on your own.

Task 1: Greatest English Letter

You are given a string, $str, made up of only alphabetic characters [a..zA..Z].

Write a script to return the greatest english letter in the given string.

 A letter is greatest if it occurs as lower and upper case. Also letter ‘b’ is greater than ‘a’ if ‘b’ appears after ‘a’ in the English alphabet.

Example 1

Input: $str = 'PeRlwEeKLy'
Output: L

There are two letters E and L that appears as lower and upper.
The letter L appears after E, so the L is the greatest english letter.

Example 2

Input: $str = 'ChaLlenge'
Output: L

Example 3

Input: $str = 'The'
Output: ''

Greatest English Letter in Raku

I first thought about a regex that could, for example, detect any pair of lowercase / uppercase letter, or vice versa. This turned out to be quite inconvenient.

So I went for a completely different approach: make two lists: one with uppercase letters and one with lowercase letters, except that we store the string’s lower case letters converted as upper case letters. Then we simply look for letters that are common to the two lists (and finally sort them appropriately).

In Raku, we will store the lists in Sets, which are immutable collections of distinct elements in no particular order. One advantage of using a Set is that this removes any duplicate from each list. The second advantage is that we can use the ∩ set intersection operator to find letters that are in both lists.

One final note: we use the (Unicode) predefined character classes <:Lu> and <:Ll> to distinguish uppercase from lowercase characters.

sub greatest-eng-let ($in) {
 my $uc = (grep { / <:Lu> / }, $in.comb).Set;
 my $lc = (map { .uc }, grep {/ <:Ll> /}, $in.comb).Set;
 return ($uc ∩ $lc).keys.sort.tail // "''";
}

my @tests = < PeRlwEeKLy ChaLlenge The >;
for @tests -> $test {
 printf "%-15s => ", $test;
 say greatest-eng-let $test;
}

This program displays the following output:

$ raku ./greatest-eng-let.raku
PeRlwEeKLy => L
ChaLlenge => L
The => ''

Greatest English Letter in Perl

Our Perl implementation essentially follows the same approach as the Raku program above: make two lists: one with uppercase letters and one with lowercase letters, except that we store the string’s lower case letters converted as upper case letters. Then we simply look for letters that are common to the two lists (and finally sort them appropriately).

In Perl, our two lists will be stored in hashes. Hashes, as Raku’s Sets, remove duplicates. There is no set intersection operator, but it is quite easy to use a loop or a grep to find common items.

use strict;
use warnings;
use feature 'say';

sub greatest_eng_let {
 my @in = split //, shift;
 my %uc = map { $_ => 1 } grep { $_ le 'Z' } @in;
 my @common = grep { exists $uc{$_}}
 map { uc } grep {$_ gt 'Z'} @in;
 return (sort @common)[-1] // "''";
}

my @tests = qw < PeRlwEeKLy ChaLlenge The >;
for my $test (@tests) {
 printf "%-15s => ", $test;
 say greatest_eng_let $test;
}

This program displays the following output:

$ perl ./greatest-eng-let.pl
PeRlwEeKLy => L
ChaLlenge => L
The => ''

Wrapping up

The next week Perl Weekly Challenge will start soon. If you want to participate in this challenge, please check https://perlweeklychallenge.org/ and make sure you answer the challenge before 23:59 BST (British summer time) on April 21, 2024. And, please, also spread the word about the Perl Weekly Challenge if you can.

 Any modules similar to Python’s Impacket?

r/perl

 Published by /u/aecyberpro
 on Tuesday 09 April 2024 16:15

 I work in infosec, specifically in penetration testing. I learned Perl to some extent years ago when Metasploit was still written in Perl (They switched to Ruby). It seems these days that most people in my industry like Python, and some of the most important modules we use in my field are in Python. Does Perl offer any modules as comprehensive as Impacket for hacking protocols such as SMB, WMI, Kerberos, etc?

 submitted by /u/aecyberpro
 [link] [comments]

 How can I capture everything between two markers in a file with perl?

Perl questions on StackOverflow

 Published by Chazg76
 on Tuesday 09 April 2024 14:39

 I have a very large XML file that is either too large to load into memory or takes too long to process with XML::Twig.

I need to extract all the information between the tags <tag1> and </tag1> (including the actual tags) to a variable/file while, at the same time, replacing this extracted information with the tag <tagX/> and save to another file.

In general, the source XML file could be on a single line or multiple lines so reading line by line would, in general, not work.

I found this answer, which removes the information from the file but does not store it anywhere: https://unix.stackexchange.com/questions/240799/how-can-i-delete-everything-between-two-markers-in-a-file

Here is my version

use strict;
use warnings;
use utf8;

my $strS='<tag1>';
my $strE='</tag1>';
my $resInfo='<tagX/>';
my $SRCFile='/tmp/file1.xml';
my $ResFile='/tmp/file1N.xml';
my $res=Remove_tag_info_from_xml_file($SRCFile,$ResFile,1,$strS,$strE,$resInfo);

sub Remove_tag_info_from_xml_file{
my $SRCFile=shift;
my $RESFile=shift;
my $REMRESFileIfExists=shift;
my $Stag=shift;
my $Etag=shift;
my $Rtag=shift || '';
#
unlink "$RESFile" if $REMRESFileIfExists==1 && -f "$RESFile";
if(-f "$RESFile"){
 return -1;
} else {
 if(-f "$SRCFile"){
 system ("perl -0777 -pe 's/\Q$Stag\E.*?\Q$Etag\E/\Q$Rtag\E/gs' <$SRCFile> $RESFile");
 if(!-f "$RESFile" || -z "$RESFile"){
 return -3;
 } else {
 return 1;
 }
 } else {
 return -2;
 }
}

The code above generates the desired file $ResFile. I then use the following code to compare the two files with the goal of extracting the required information to file 3.xml.

system("xmllint --format $SRCFile > /dev/shm/1.xml ; xmllint --format $ResFile > /dev/shm/2.xml ; grep -v -f /dev/shm/2.xml /dev/shm/1.xml > /dev/shm/3.xml");

Unfortunately this uses XML methods and therefore causes memory problems when the XML source file is large.

Basic example:

$SRCFile

<Info>
 <tagA>
 </tagA>
 <tagB>
 <tagM>
 </tagM>
 </tagB>
 <tag1>
 Info in here
 </tag1>
 <tagY>
 </tagY>
</Info>

or, equivalently:

<Info><tagA></tagA><tagB><tagM></tagM></tagB><tag1>Info in here</tag1><tagY></tagY></Info>

After applying my code this would result in:

$ResFile

<Info>
 <tagA>
 </tagA>
 <tagB>
 <tagM>
 </tagM>
 </tagB>
 <tagX/>
 <tagY>
 </tagY>
</Info>

or, equivalently:

<Info><tagA></tagA><tagB><tagM></tagM></tagB><tagX/><tagY></tagY></Info>

AND 3.xml

<tag1>
 Info in here
</tag1>

or, equivalently:

<tag1>Info in here</tag1>

Is there a way of doing the removal and printing in one step using a similar idea to perl -0777 -pe 's/\Q$Stag\E.*?\Q$Etag\E/\Q$Rtag\E/gs' <$SRCFile> $RESFile ?

 Are you teaching your kids Perl?

r/perl

 Published by /u/karjala
 on Tuesday 09 April 2024 11:00

 I think we need to create the next generation of Perl devs, because one day we’ll all be dead. What will Perl become if we don’t train as many people as we can?

 submitted by /u/karjala
 [link] [comments]

 What is the 'DEFAULT' behaviour for perl signals?

Perl questions on StackOverflow

 Published by knmiecc
 on Tuesday 09 April 2024 10:48

 The perlipc doc, section Signals, states amongst other things:

You may also choose to assign the strings "IGNORE" or "DEFAULT" as the handler, in which case Perl will try to discard the signal or do the default thing.

Now I've read up all sorts of things with regards to how to add a custom handler for different signals, how to ignore the signal and how to restore the 'DEFAULT' behaviour.
My question, however, is: What exactly is the 'DEFAULT' behaviour for the different signals? Where can I look this up? Is that defined anywhere (at least by platform)? So far I have been unlucky in my search for more in-depth docs.

I'm trying to figure out what exactly the perl interpreter does in my case when I press CTRL+c if it e.g. calls the destructor on all objects or if it simply exits then and there.

 PEVANS Core Perl 5: Grant Report for March 2024

Perl Foundation News

 Published by alh
 on Tuesday 09 April 2024 07:47

 [image:]

 Paul writes:


```
Hours:


2   = builtin::is_inf + is_nan (as yet unfinished)
        https://github.com/Perl/perl5/pull/22059


1   = Tidying up PADNAMEf_TOMBSTONE
        https://github.com/Perl/perl5/pull/22063


1   = Revert PR 21915
        https://github.com/Perl/perl5/pull/22085


2   = C99 named initialisers in MGVTBL structs
        https://github.com/Perl/perl5/pull/22086


4   = perl 5.39.9 release
        https://metacpan.org/release/PEVANS/perl-5.39.9


Total: 10 hours
```


 Maintaining Perl (Tony Cook) January 2024

Perl Foundation News

 Published by alh
 on Tuesday 09 April 2024 07:43

 [image:]

 Tony writes:


```
[Hours]         [Activity]
2024/01/02      Tuesday
 0.18           #21759 review and approve
 0.17           #21705 review and approve
 0.08           #21736 review and approve
 0.33           #21757 review and approve
 0.22           #21749 review and approve
 0.08           #21778 review and approve
 1.43           #21745 review in progress


 0.67           #21745 more review and approve, comment


3.16


2024/01/03      Wednesday
 0.10           #21761 review and approve
 0.32           extract RC_STACK pp_backtick from an experiment, push for
                CI
 0.15           #21734 review and approve
 0.08           #21739 review and conditionally approve
 0.70           #21740 review and comment
 0.10           check CI results and make PR 21789
 0.05           #21754 review and comment
 0.32           #21764 review, research and approve
 0.13           #21767 review and approve
 0.18           #21769 review, research and comment
 0.20           #21770 review, comment and approve
 0.15           #21789 follow-up comment
 0.10           #21772 review and approve
 0.20           #21773 review
 0.33           #21773 more review and approve
 0.18           #21771 review and approve
 0.08           #21776 review and approve
 0.10           #21777 review and approve
 0.08           #21786 review and approve


 0.23           #21790 review and approve


3.78


2024/01/04      Thursday
 0.25           github notifications
 0.95           list, native data checks, comment on the linked spec
 0.30           #21754 review update and approve
 0.08           #21792 review and approve
 0.08           #21793 review and approve
 0.07           #21794 review and approve
 1.47           #21791 review, testing, comments, approve
 0.18           #21737 re-check and apply to blead


 0.42           #16608 debugging


3.80


2024/01/08      Monday
 0.18           github notifications
 0.08           #21798 review and approve
 0.93           #21796 start review, comment


 2.70           #21796 follow-up, more review


3.89


2024/01/09      Tuesday


 0.50           #21796 issue fixed, re-check force pushed commits, approve


0.50


2024/01/10      Wednesday
 0.08           #21808 review and approve
 0.47           #21801 review and comment
 0.08           #21810 review and approve
 0.38           #21805 review discussion and request some info
 2.32           #21782 research, comment on CPAN ticket, work on a fix and
                push for CI
 0.10           #21782 check CI results, make PR 21813
 1.25           #21751 research, reproduce on modern darwin, test fix on
                modern darwin and push for CI


 0.47           #21724 research, testing


5.15


2024/01/11      Thursday
 0.52           #21813 apply to blead, perldelta
 1.77           review Dave’s XS post to ML, research and comment
 0.08           #21751 review CI results and make PR 21818
 0.08           #21801 review updates and approve
 0.07           #21803 review discussion and ask for some info
 0.15           #21815 review and approve
 0.33           #21814 review, research and comment
 0.25           #15108 work up a small doc update and push for CI


 0.32           #21814 review updates, research and approve


3.57


2024/01/15      Monday
 1.38           #21821 investigate why bad link didn’t result in an error,
                find many similar errors, testing on perldoc.perl.org and
                metacpan, fixes, testing and push
 0.70           #21820 review and approve
 2.65           warnings on win32 gcc builds, testing, research (-Wformat
                is broken), push for CI


 0.18           #21832 review and comment


4.91


2024/01/16      Tuesday
 0.63           review coverity scan results, discuss one with khw,
                comment on original pull request for the other
 0.80           #21832 review changes, research and approve
 0.08           #21837 review and approve
 0.75           #21833 review, research and comment
 0.25           #21834 review and approve
 0.43           #21840 review and approve
 0.48           #21824 review code and discussion


 0.30           warnings on win32 gcc builds: open pR 21842


3.72


2024/01/17      Wednesday
 0.08           #21842 apply to blead
 0.33           #21833 review modifications, research, comment and approve
 0.43           #21843 review and approve
 0.08           #21844 review and approve
 1.08           #21091 research based on latest comment and follow-up
                comment
 0.62           #21550 research


 0.58           #21550 more research


3.20


2024/01/18      Thursday
 0.35           #21833 research and comment
 0.97           look over use VERSION -> builtin thread, review #21850 and
                approve
 0.08           #21845 review and approve
 0.42           #21846 review, research and approve
 0.38           #21847 review, consider other comments, comment and
                approve
 0.15           #21848 review
 0.48           #21550 static build detection and testing


 0.95           #21550 reading code


3.78


2024/01/22      Monday
 0.43           #21833 review updates and approve
 0.08           #21853 review and approve
 0.13           #21855 review and approve with comment
 0.22           #21856 review and approve
 0.08           #21857 review and approve
 0.13           #21858 review and approve
 0.12           #21859 review and approve
 0.12           #21862 review and approve


 0.08           #21863 review and approve


1.39


2024/01/23      Tuesday
 0.90           #21850 review updates and comment
 0.13           #21868 review and approve
 0.08           #21869 briefly review and approve
 0.30           #21871 review, briefly research and comment, brief
                discussion, research on #21850 in #p5p


 0.92           #21872 review


2.33


2024/01/25      Thursday
 1.18           #21872 more review, testing, comment
 0.35           #21850 review changes and approve
 0.72           #21877 try to reproduce and profile (build issues with -
                pg)


 2.15           #21877 testing, review code, comment


4.40


2024/01/29      Monday
 0.30           github notifications
 0.63           #21872 consider builtin implementation vs RC_STACK, find
                why it works
 0.53           #21874 review and comment
 0.15           #21844 review and comment
 1.25           #21885 review, research, testing and comment
 0.07           #21866 review and approve
 0.40           #21887 review, research and comment
 0.08           #21891 review and approve


 2.23           #21877 profiling, review code, comment


5.64


2024/01/30      Tuesday
 0.50           review coverity scan results, work up a fix and push for
                CI
 1.43           #21877 long comment
 0.57           #21884 comment
 0.13           coverity scan result follow-up: check CI, open PR #21910
 1.55           #16607 also look into handling hwm for xsubs properly,


                find several broken XS, (including EU::PXS generated code)


4.18


2024/01/31      Wednesday
 0.13           #21884 review updates and approve
 0.15           #21883 review and approve
 0.45           #21873 testing, research and comment
 0.32           #21878 research and comment
 0.17           #21906 review and apply to blead
 0.62           #16607 research, follow-up on related comment on #21872


 0.45           #21897 review, research and comment


2.29


Which I calculate is 59.69 hours.


Approximately 88 tickets were reviewed or worked on, and 4 patches
were applied.
```


 How does the 'use utf8' interfere with the 'Method::Signatures::Simple' module?

Perl questions on StackOverflow

 Published by clt60
 on Tuesday 09 April 2024 00:44

 Have this code

use 5.034;
use warnings;
#use utf8;
binmode(STDOUT, ':encoding(utf-8)');

package User {
 use Method::Signatures::Simple;
 use Moose;
 has 'name' => (is => 'rw', isa => 'Str', default => sub { return 'foo' });
 method xname { return "čč" . $self->name . "ňň"; }
}

my $u = User->new;
say $u->xname;

It nearly works as expected (not fully correct, because the source code containing utf8.)

After uncommentig the use utf8; the perl -c throws errors:

Couldn't find declarator 'method' at /u/ae/envs/plenv/versions/5.38.2/lib/perl5/site_perl/5.38.2/amd64-freebsd/Devel/Declare/Context/Simple.pm line 47.
 Devel::Declare::Context::Simple::skip_declarator(Method::Signatures::Simple=HASH(0x8292a3fa8)) called at /u/ae/envs/plenv/versions/5.38.2/lib/perl5/site_perl/5.38.2/amd64-freebsd/Devel/Declare/MethodInstaller/Simple.pm line 62
 Devel::Declare::MethodInstaller::Simple::parser(Method::Signatures::Simple=HASH(0x8292a3fa8), "method", 1, 1) called at /u/ae/envs/plenv/versions/5.38.2/lib/perl5/site_perl/5.38.2/amd64-freebsd/Devel/Declare/MethodInstaller/Simple.pm line 25
 Devel::Declare::MethodInstaller::Simple::__ANON__("method", 1) called at /u/ae/envs/plenv/versions/5.38.2/lib/perl5/site_perl/5.38.2/amd64-freebsd/Devel/Declare.pm line 277
 Devel::Declare::linestr_callback("const", "method", 1) called at t line 10

Two questions:

	why the simple use utf8 pragma interfere with the use Method::Signatures::Simple, and
	how to use the Method::Signatures::Simple together with the use utf8?

 HTTP::Dameon: mTLS/ClientAuth possible?

Perl questions on StackOverflow

 Published by chris01
 on Monday 08 April 2024 20:32

 I am using HTTP::Daemon in small Perl project as a REST-Server.

Now I need to upgrade to TLS with client-authentication (mTLS). Today it is simple HTTP without TLS.

Is it possible to have mTLS with HTTP::Daemon?
What settings I need to have for it?

 Trouble generating coverage report with lcov.perl files

Perl questions on StackOverflow

 Published by horsemann07
 on Monday 08 April 2024 13:42

 I'm attempting to generate a coverage report using the lcov.perl files in my project. I have all the necessary lcov.perl, geninfo.perl, genhtml.perl, and repl.bat files stored in one folder. In my .bat scripting, I'm setting the path to the .perl files in the LCOV_PERL_SCIRPT_DIR variable like this: C:\USER\a\b\c.

Here's a snippet of my script:

cmake -G "Unix Makefiles" -D "CMAKE_MAKE_PROGRAM:PATH=!MAKE_BIN!/make.exe" -B debug -DCMAKE_BUILD_TYPE=Debug .
copy linker*.ld debug
cmake --build debug -j4
cd debug
cppunittest.exe -ojunit

cd debug
mkdir runs
move *.xml runs/
cd ..

cd debug\CMakeFiles\cppunittest.dir
set "filename=gcov"
set "LCOV_PERL_SCIRPT_DIR=!LCOV_PERL_SCIRPT_DIR:/=\%!"
echo "LCOV_PERL_SCIRPT_DIR=!LCOV_PERL_SCIRPT_DIR!"
"!LCOV_PERL_SCIRPT_DIR!/lcov.perl" -b . -d . -c -o "!filename!.info"
echo test1
type "!filename!.info" | call "!LCOV_PERL_SCIRPT_DIR!/repl.bat" ^
 "!CUR_BAT_SCRIPT_DIR!/debug/CMakeFiles/cppunittest.dir/" "" L B E > "!filename!.info.tmp"
 echo test2
type "!filename!.info.tmp" | call "!LCOV_PERL_SCIRPT_DIR!/repl.bat" "\" "/" >"!filename!.info1.tmp"
echo test2
move /y "!filename!.info1.tmp" "!filename!.info" >nul
echo test3

"!LCOV_PERL_SCIRPT_DIR!/genhtml.perl" "!filename!.info" --output-directory out
cd ../../..

I can see that XML files are generated, but I'm encountering the following error:

"libgcov profiling error

libgcov profiling error: C:\Users\a\b\c\d\test\unit\common_io\adc\debug/CMakeFiles/cppunittest.dir/C_/Users/JhaRagha/projects/mcu_build_script/mcu_firmware/platform-bsp/source/common_io/adc/src/iot_adc.c.gcda: overwriting an existing profile data with a different timestamp
A subdirectory or file runs already exists.
C:\Users\a\b\c\d\test\unit\common_io\adc\debug\cpputest_AdcTestGroup.xml
1 file(s) moved.
"LCOV_PERL_SCIRPT_DIR=C:\Users\a\b\c\d\..\platform-bsp\toolchain\scripts\win_cpputest"
Capturing coverage data from .
C:\Users\a\b\c\d\toolchain\scripts\win_cpputest/geninfo.perl . --output-filename gcov.info --base-directory .Found gcov version: 9.2.0
Scanning . for .gcda files ...
geninfo.perl: Can't cd to ../../../../../../../../../../../.. from ./C_/Users/a/b/c/mcu_firmware/d/test/unit/common_io/build/source: No such file or directory at C:/Strawberry/perl/lib/File/Find.pm line 477.
test1
test2
C:\Users\a\b\c\d\toolchain\scripts\win_cpputest\repl.bat(279, 1) Microsoft JScript runtime error: Syntax error in regular expression

test2
test3
Reading data file gcov.info
genhtml.perl: ERROR: no valid records found in tracefile gcov.info
A subdirectory or file results already exists.
The system cannot find the file specified.
Access is denied.

I also tried to manually change directories using cd ../../../../../../../../../../../.. from from ./C_/Users/JhaRagha/projects/mcu_build_script/mcu_firmware/platform-bsp/test/unit/common_io/build/source and was able to get back successfully.

I'm unsure how to resolve these errors.

 Perl Weekly #663 - No idea

dev.to #perl

 Published by Gabor Szabo
 on Monday 08 April 2024 07:09

 Originally published at Perl Weekly 663

Hi there

It seems I have less and less to write about in these editorials. This is of course not very surprising as I there are fewer and fewer articles published about Perl. The only thing that still keeps this afloat is the Weekly Challenge of Mohammad. So maybe you can sponsor it?

Sad news: Just a few days ago I heard that Dave Hodgkinson has passed away last December. LinkedIn, Facebook, and his web site where he posted in November. May he rest in peace and his family find solace. He will be missed.

In a totally unrelated sadness: It has been six months.

I wish you a nicer week!

--

 Your editor: Gabor Szabo.

 Articles

 A FOSS Ecosystem Checklist for the Benefit of Maintainer Sustainability

 Collecting talks

Have you ever enjoyed a presentation or a course given by Dave Cross? Well, his beginnings were humble, to say the least, but luckily he did not have time to give up. Anyway, here is an opportunity for Internet archeologists to help Dave.

 Perl programming using KDE's Kate editor in Linux tutorial

A video

 PDL 2.087 released and a summary of a ~year of PDL

 Discussion

 Any new developments in webperl?

 Breaking up a 7300 line .pm

 Perl

 This Week in PSC (143)

 The Weekly Challenge

The Weekly Challenge by Mohammad Sajid Anwar will help you step out of your comfort-zone. We pick one champion at the end of the month from among all of the contributors during the month.

 The Weekly Challenge - 264

Welcome to a new week with a couple of fun tasks "Greatest English Letter" and "Target Array". If you are new to the weekly challenge then why not join us and have fun every week. For more information, please read the FAQ.

 RECAP - The Weekly Challenge - 263

Enjoy a quick recap of last week's contributions by Team PWC dealing with the "Target Index" and "Merge Items" tasks in Perl and Raku. You will find plenty of solutions to keep you busy.

 TWC263

Don't you love map{}? See yourself how it can make your code look cute.

 Target Merge

Method chaining of Raku makes it easy to create one-liner. Raku Rocks !!!

 Don't Sort It, Be Happy

Educational task analysis, you really don't want to skip, thanks for sharing.

 Arrayed Against Me

Have you used postderef? It is regular in Dave's contribution. Please do checkout.

 The Weekly Challenge - 263

Get thorough task analysis and discussion about weekly tasks. Keep it up great work.

 Which Witch?

I highly encourage everyone to try PDL if not done already. I would one day soon. Well done.

 Perl Weekly Challenge 263: Target Index

This week favourite is grep and sort. You will appreciate the clean code. Thanks for sharing.

 Perl Weekly Challenge 263: Merge Items

Just good old for-loop and no magics. Love the simplicity, keep it up.

 iterating and filtering arrays

Magical one-liner in Raku is not to be missed. Great work.

 Perl Weekly Challenge 263

This week tasks were ideal for the master of Perl one-liners. Highly recommended.

 Indexes and Items

I like the story behnd the scene. There are plenty to learn from such story. Thanks for sharing.

 Merge the Target Index Items

Lots of Raku magic in action, makes it special. You will fall in love with the language. Well done and keep it up.

 Find the target and merge the inventory

Cute and easy to follow solutions in Perl. Anybody can follow it and try it. Thanks for sharing.

 The Weekly Challenge - 263

I have no clue why avoiding the use of 'my' in declaring variables. I would love to know the reason behind it.

 The Weekly Challenge #263

Clever use of CPAN module. I always encourage the use of CPAN module. Well done.

 Targets Merge

My personal favourite this week is Postscript solution. How about you? Keep it up great work.

 Finding the target

Couple of interesting thing about Python in this week post. One, use of array as parameter and return list. You don't want to miss it.

 Weekly collections

 NICEPERL's lists

Great CPAN modules released last week;
MetaCPAN weekly report;

You joined the Perl Weekly to get weekly e-mails about the Perl programming language and related topics.

Want to see more? See the archives of all the issues.

Not yet subscribed to the newsletter? Join us free of charge!

(C) Copyright Gabor Szabo

The articles are copyright the respective authors.

 Collecting talks

r/perl

 Published by /u/davorg
 on Sunday 07 April 2024 17:35

 submitted by /u/davorg
 [link] [comments]

 Collecting talks

Perl Hacks

 Published by Dave Cross
 on Sunday 07 April 2024 17:29

 I gave my first public talk sometime between the 22nd and 24th September 2000. It was at the first YAPC::Europe which was held in London between those dates. I can’t be any more precise because the schedule is no longer online and memory fades.

I can, however, tell you that the talk was a disaster. I originally wasn’t planning to give a talk at all, but my first book was about to be published and the publishers thought that giving a talk about it to a room full of Perl programmers would be great marketing. I guess that makes sense. But what they didn’t take into account was the fact that I knew nothing about how to give an interesting talk. So I threw together a few bullet points taken from the contents of the book and wrote a simple Perl script to turn those bullet points into HTML slides (it was 2000 – that’s what everyone did). I gave absolutely no thought to what the audience might want to know or how I could tell a story to guide them through. It was a really dull talk. I’m sorry if you were in the audience. Oh, and add the fact that I was speaking after the natural raconteur, Charlie Stross and you can probably see why I’m eternally grateful that the videos we took of the conference never saw the light of day. I left the stage knowing for sure that public speaking was not for me and vowed that I would never give another talk.

But…

We were experimenting with a session of lightning talks at the conference and I had already volunteered to give a talk about my silly module Symbol::Approx::Sub. I didn’t feel that I could back out and, anyway, it was only five minutes. How bad could it be?

As it turns out, with Symbol::Approx::Sub I had stumbled on something that was simultaneously both funny and useful (well, the techniques are useful – obviously the module itself isn’t). And I accidentally managed to tell the story of the module engagingly and entertainingly. People laughed. And they clapped enthusiastically at the end. I immediately changed my mind about never speaking in public again. This was amazing. This was as close as I was ever going to get to playing on stage at the Hammersmith Odeon. This was addictive.

But something had to change. I had to get better at it. I had to work out how to give entertaining and useful talks that were longer than five minutes long. So I studied the subject of public speaking. The Perl community already had two great public speakers in Mark Dominus and Damian Conway and I took every opportunity to watch them speak and work out what they were doing. It helped that they both ran courses on how to be a better public speaker. I also read books on the topic and when TED talks started coming online I watched the most popular ones obsessively to work out what people were doing to give such engaging talks (it turns out the answer really boils down to – taking out most of the content!)

And I practiced. I don’t think there was a conference I went to between 2000 and 2020 where I didn’t give a talk. I’d never turn down an opportunity to speak at a Perl Mongers meeting. And. while I’m certainly not Damian Conway, I like to think I got better at it. I’d get pretty good scores whenever there was a feedback form.

All of which means that I’ve given dozens of talks over the last twenty-plus years. From lightning talks to all-day (actually, a couple of two-day) training sessions. I’ve tried to be organised about keeping copies of the slides from all of the talks I’ve given, but I fear a few decks have slipped through the cracks over the years. And, of course, there are plenty of videos of me giving various talks over that time.

I’ve been thinking for a while that it would be good to gather them all together on one site. And, a couple of weeks ago. I started prodding at the project. Today, it reached the stage where it’s (just barely) useable. It’s at talks.davecross.co.uk. Currently, it’s just a list of talk titles and it only covers the last five years or so (and for a lot of that time, there were no conferences or meetings to speak at). But having something out there will hopefully encourage me to expand it in two dimensions:

	Adding descriptions of the talks along with embedded slides and video
	Adding more talks

The second point is going to be fun. There will be some serious data archaeology going on. I think I can dig out details of all the YAPCs and LPWs I’ve spoken at – but can I really find details of every London Perl Mongers technical meeting? And there are some really obscure things in there – I’m pretty sure I spoke at a Belgian Perl Workshop once. And what was that Italian conference held in Ferrara just before the Mediterranean Perl Whirl? There’s a lot of digging around in the obscure corners of the web (and my hard disk!) in my near future.

Wish me luck.
The post Collecting talks first appeared on Perl Hacks.

 Perl programming using KDE's Kate editor in Linux tutorial

r/perl

 Published by /u/nmariusp
 on Sunday 07 April 2024 14:57

 	 [image: Perl programming using KDE's Kate editor in Linux tutorial] 	 submitted by /u/nmariusp
 [link] [comments]

 PDL 2.087 released and a summary of a ~year of PDL

r/perl

 Published by /u/zmughal
 on Sunday 07 April 2024 13:13

 A new release of PDL is out! It's been about a year since I last posted on here about a PDL release (last was PDL 2.083).
 A selection of changes since PDL 2.083:
 	Diab Jerius reported that a previous change to [xyz]vals to return at least a double had a regression for code that requests an explicit type smaller than that. Fixed in 2.085.
 Diab Jerius also reported several other edge cases: 1, 2, 3 including a fix for vsearch.
 Also, Diab Jerius modularised the primitive ops tests which allows for faster parallel testing.

	Harald Jörg reported that large arrays would cause PDL::FFT to crash. Fixed by switching from the stack VLAs to heap allocation. Fixed in 2.085.
 While it is recommended to use PDL::FFTW3 instead, PDL::FFT is bundled with PDL for the cases where PDL::FFTW3 can not be easily installed.

	Bas Couwenberg reported and fixed a previously deprecated API in HDF4 which has now been removed and replaced. Fixed in 2.085.
 As part of the Debian release process, Bas Couwenberg reported a failure on i386. Fixed in 2.087.

	Shawn Laffan provided an improvement to PDL::GIS::Proj so that it would load correctly on Windows via Alien::proj.

	Po-Chuan Hsieh provided a build fix for FreeBSD on amd64. I also happened to talk to James E Keenan around the same time about PDL builds on FreeBSD so this was followed up by adding CI testing for FreeBSD. Fixed in 2.085.

	Ryan Egesdahl provided a fix for macOS Ventura which changed the location of GLUT headers. Fixed in 2.085.

	Eli Schwartz reported an upstream Gentoo bug when building with LTO that uncovered 64-bit issues in Minuit and Slatec Fortran code. Fixed in 2.086.

	@vadim-160102 reported several issues with stringification: 1, 2; one of which uncovered a bug in conversion of ulonglong to Perl scalar.

	Karl Glazebrook, @vadim-160102, and users from PerlMonks provided valuable reports in tracking down issues with dataflow https://github.com/PDLPorters/pdl/issues/461. Fix available in 2.086.

	Jörg Sommrey contributed improved typemap handling which allows for using the typemap definitions that are available in Perl's default typemap. Available in 2.086.

	Ed has added many improvements to the PP code generator and internal API as well as several new functions. Please see the Changes file for details!
 Of note are several speed improvements that are inspired by Eric Wheeler's note about the speed of sequence().

 A full list of closed issues and PRs is here. Thanks to all the contributors!
 There are also some things to report from the wider World of PDL:
 	Jörg Sommrey has released a PDL interface to GLPK (GNU Linear Programming Kit) for mathematical optimization: https://metacpan.org/pod/PDL::Opt::GLPK.

	The PGPLOT distribution now incorporates PDL::Graphics::PGPLOT module that was in the PDL distribution. The dependencies remain the same.

	PDL::Graphics::Simple had some small updates to the drivers. This is preparation for splitting the backend engines to their respective backend distributions (not yet released) and defining an API version that the engines conform to.

 submitted by /u/zmughal
 [link] [comments]

 Finding the target

dev.to #perl

 Published by Simon Green
 on Sunday 07 April 2024 08:32

 Weekly Challenge 263

Each week Mohammad S. Anwar sends out The Weekly Challenge, a chance for all of us to come up with solutions to two weekly tasks. My solutions are written in Python first, and then converted to Perl. It's a great way for us all to practice some coding.

Challenge, My solutions

 Task 1: Target Index

 Task

You are given an array of integers, @ints and a target element $k.

Write a script to return the list of indices in the sorted array where the element is same as the given target element.

 My solution

This is a pretty straight forward task, so doesn't require much explanation. I sort the array (numerically), and then return the index of items that equally k in the list.

def target_index(ints: list, k: int) -> list:
 ints = sorted(ints)
 return [pos for pos, value in enumerate(ints) if value == k]

 Examples

$./ch-1.py 1 5 3 2 4 2 2
(1, 2)

$./ch-1.py 1 2 4 3 5 6
()

$./ch-1.py 5 3 2 4 2 1 4
(4)

 Task 2: Merge Items

 Task

You are given two 2-D array of positive integers, $items1 and $items2 where element is pair of (item_id, item_quantity).

Write a script to return the merged items.

 My solution

My solution to this task is broken into two chunks. The first is to calculate the cumulative totals for each item. While the task mentioned items1 and items2 as variables, I've use the more meaningful variables item_id and item_qty.

from collections import defaultdict

def merge_items(*arrays) -> list:
 # Calculate the total of each items
 totals = defaultdict(int)
 for array in arrays:
 for item in array:
 item_id, item_qty = item
 totals[item_id] += item_qty

The second part of the task is turning the dict (hash in Perl) into a list of item_id and item_qty pairs. This can be done in a single line with list comprehension.

 return [[item, totals[item]] for item in sorted(totals)]

 Examples

$./ch-2.py "[[1,1], [2,1], [3,2]]" "[[2,2], [1,3]]"
[[1, 4], [2, 3], [3, 2]]

$./ch-2.py "[[1,2], [2,3], [1,3], [3,2]]" "[[3,1], [1,3]]"
[[1, 8], [2, 3], [3, 3]]

$./ch-2.py "[[1,1], [2,2], [3,3]]" "[[2,3], [2,4]]"
[[1, 1], [2, 9], [3, 3]]

 (cdxc) 7 great CPAN modules released last week

Niceperl

 Published by Unknown
 on Sunday 07 April 2024 08:39

 Updates for great CPAN modules released last week. A module is considered great if its favorites count is greater or equal than 12.

	
CPAN::Audit - Audit CPAN distributions for known vulnerabilities
	Version: 20240401.002 on 2024-04-01, with 13 votes
	Previous CPAN version: 20240329.002 was 2 days before
	Author: BDFOY

	
Firefox::Marionette - Automate the Firefox browser with the Marionette protocol
	Version: 1.55 on 2024-04-06, with 16 votes
	Previous CPAN version: 0.77 was 4 years, 8 months, 30 days before
	Author: DDICK

	
Imager - Perl extension for Generating 24 bit Images
	Version: 1.024 on 2024-04-06, with 65 votes
	Previous CPAN version: 1.023 was 2 months, 18 days before
	Author: TONYC

	
Compress::Zlib - IO Interface to compressed data files/buffers
	Version: 2.211 on 2024-04-06, with 16 votes
	Previous CPAN version: 2.207 was 1 month, 17 days before
	Author: PMQS

	
Net::Curl - Perl interface for libcurl
	Version: 0.56 on 2024-04-01, with 18 votes
	Previous CPAN version: 0.55 was 6 months, 11 days before
	Author: SYP

	
PDL - Perl Data Language
	Version: 2.087 on 2024-04-05, with 52 votes
	Previous CPAN version: 2.085 was 2 months, 6 days before
	Author: ETJ

	
SPVM - SPVM Language
	Version: 0.989098 on 2024-04-04, with 31 votes
	Previous CPAN version: 0.989096 was 8 days before
	Author: KIMOTO

 (dlxxxv) metacpan weekly report - Firefox::Marionette

Niceperl

 Published by Unknown
 on Sunday 07 April 2024 08:37

 This is the weekly favourites list of CPAN distributions. Votes count: 55

Week's winner: Firefox::Marionette (+2)

Build date: 2024/04/07 06:36:52 GMT

Clicked for first time:

	Amazon::Sites - A class to represent Amazon sites
	AnyEvent::Monitor::CPU - monitors your process CPU usage, with high/low watermark triggers
	DateTime::Format::PDF - PDF DateTime Parser and Formatter.
	lib::root - find perl root and push lib modules path to @INC
	Runtime::Debugger - Easy to use REPL with existing lexical support and DWIM tab completion.

Increasing its reputation:

	AnyEvent::AIO (+1=6)
	App::local::lib::Win32Helper (+1=2)
	autovivification (+1=29)
	BioPerl (+1=33)
	Capture::Tiny (+1=103)
	Catalyst::Controller::ActionRole (+1=2)
	Chart::Plotly (+1=17)
	Class::Tiny::Immutable (+1=4)
	Dancer (+1=149)
	Data::Compare (+1=13)
	DateTime (+1=215)
	DBD::Pg (+1=97)
	Devel::IPerl (+1=24)
	Devel::NYTProf (+1=189)
	Encode (+1=63)
	Env::Dot (+1=8)
	ExtUtils::MakeMaker (+1=57)
	Firefox::Marionette (+2=16)
	Furl (+1=43)
	GIS::Distance (+1=4)
	Guacamole (+1=8)
	IO (+1=64)
	IO::Prompter (+1=27)
	IO::Socket::IP (+1=21)
	LWP::Curl (+1=7)
	Mail::SpamAssassin::4.0.1::rc1l (+1=0)
	Mojo::Server::Threaded (+1=5)
	Mojolicious (+1=493)
	Mojolicious::Plugin::InputValidation (+1=2)
	MongoDB (+1=88)
	Moose (+1=329)
	Net::Curl (+1=18)
	Net::Server (+1=33)
	NetAddr::IP (+1=14)
	perl (+1=419)
	Proc::CPUUsage (+1=6)
	Redis (+1=42)
	Role::Tiny (+1=70)
	Starman (+1=115)
	Supervisord::Client (+1=2)
	Syntax::Keyword::Match (+1=12)
	Syntax::Operator::In (+1=5)
	Template::Toolkit (+1=145)
	Test::More::UTF8 (+1=8)
	Test::mysqld (+1=11)
	Test::WWW::Mechanize (+1=19)
	Time::Piece (+1=57)
	W3C::LinkChecker (+1=5)
	WWW::Mechanize (+1=101)

 feature.pm: Fix small typo of 'stilll' in docs

Perl commits on GitHub

 Published by leonerd
 on Saturday 06 April 2024 09:46

 feature.pm: Fix small typo of 'stilll' in docs

 This Week in PSC (143)

blogs.perl.org

 Published by Perl Steering Council
 on Thursday 04 April 2024 22:04

 	We’ll chase up current implementors of outstanding PPCs to see what progress is
	Reviewed the new bugs since last review. One new potential blocker - 22121
	Reviewed a first draft of a “Perl Roadmap” presentation that might be given at PTS

 How to Enhance Your Perl Web Applications with HTML and CSS

Perl on Medium

 Published by Robert McMenemy
 on Thursday 04 April 2024 05:34

 [image:]
Introduction
Continue reading on Medium »

 `README.riscos`: Improve the document

Perl commits on GitHub

 Published by rwp0
 on Wednesday 03 April 2024 23:19

 `README.riscos`: Improve the document

Enhance formatting, minor clarifications etc

https://perldoc.perl.org/perlriscos

 PWC 263.1 Don't Sort It, Be Happy

dev.to #perl

 Published by Bob Lied
 on Wednesday 03 April 2024 22:18

 PWC 263, Task 1 Target Index

Here's a little blog I wrote. You might want to read it note for note.

You are given an array of integers, @ints,
and a target element $k.

Write a script to return the list of indices
in the sorted array where the element is the
same as the given target element.

Example 1

	Input: @ints = (1, 5, 3, 2, 4, 2), $k = 2

	Output: (1, 2)

	Sorted array: (1, 2, 2, 3, 4, 5)

	Target indices: (1, 2) as $ints[1] = 2 and $ints[2] = 2

 Dive right in

Well, the example gives it away, doesn't it? Sort the array and waddle up the list to the first index where $k exists. Then, because the array is sorted, all the other places where $k exists must be adjacent.

 Or not

But hold on. In every algorithm we have some trouble, but when you sort you make it double.

All the $k together means we've effectively partitioned the array into three sets: elements that are less than $k, elements equal to $k, and the rest.

We don't have to sort the array at all. We just have to traverse the array and count the elements in the first two partitions.

sub targetIndex($k, @ints)
{
 my ($below, $same) = (0, 0);
 foreach (@ints)
 {
 if ($_ < $k) { $below++ }
 elsif ($_ == $k) { $same++ }
 }
 return [] if $same == 0;
 return [$below .. ($same + $below - 1)];
}

If $k doesn't appear at all, we can bail out by returning an empty list. $below and $same tell us the range of numbers we need in the answer.

$below = 1 # 1 element less than $k
$same = 2 # 2 elements equal to $k
 { }
 1 { 2 2 } 3 4 5
 [0] { [1] [2] } [3] [4] [5]
 ^ ^
 | +---- $below + $same -1 = 1+2-1 = 2
 $below-+

The .. range operator makes short work of creating the sequence of numbers we want.

Put that range of numbers into an array, and we have our answer. This function is returning array references, not arrays, so the calling function will have to de-reference. In context, it might look like

say "(", join(",", targetIndex($Target, @ARGV)->@*), ")";

Now there is the blog I wrote. I hope you liked the way I code. Don't worry, be hacker.

 h2ph: define all symbols at runtime

Perl commits on GitHub

 Published by mauke
 on Wednesday 03 April 2024 18:34

 h2ph: define all symbols at runtime

Preprocessor directives must be processed strictly in order. `#if` and
`#ifdef` directives can inspect the current state of defined symbols.
That's why it is wrong to translate `#define FOO() ...` to `sub foo() {
... }` since subroutine definitions are processed unconditionally at
compile time, before the rest of the code starts running.

In particular,

 unless(defined(&FOO)) {
 sub FOO () { eval q(1); }
 }

is equivalent to

 # at compile time:
 sub FOO () { eval q(1); }

 # ... later, at runtime:
 unless(defined(&FOO)) {
 # does nothing
 }

Fix this case by always wrapping subroutines in eval '...', which moves
the symbol definition to runtime, regardless of what $t (our indentation
state) is.

Similarly, generate `_h2ph_pre.ph` without the functionally useless
`unless (defined &...) { }` blocks. We don't need runtime definitions
(via eval) here because nothing in this file depends on the dynamic
state of macro definitions. It's all `#define`s, no `#if`s.

Fixes #22109.

 fixup comment in S_trie_bitmap_set_folded()

Perl commits on GitHub

 Published by iabyn
 on Tuesday 02 April 2024 20:00

 fixup comment in S_trie_bitmap_set_folded()

Karl pointed out that the comment was only accurate on non-EBCDIC
systems.

 Perl Weekly Challenge 263: Merge Items

blogs.perl.org

 Published by laurent_r
 on Tuesday 02 April 2024 19:01

 These are some answers to the Week 263, Task 2, of the Perl Weekly Challenge organized by Mohammad S. Anwar.

Spoiler Alert: This weekly challenge deadline is due in a few days from now (on April 7, 2024 at 23:59). This blog post provides some solutions to this challenge. Please don’t read on if you intend to complete the challenge on your own.

Task 2: Merge Items

You are given two 2-D array of positive integers, $items1 and $items2 where element is pair of (item_id, item_quantity).

Write a script to return the merged items.

Example 1

Input: $items1 = [[1,1], [2,1], [3,2]]
 $items2 = [[2,2], [1,3]]
Output: [[1,4], [2,3], [3,2]]

Item id (1) appears 2 times: [1,1] and [1,3]. Merged item now (1,4)
Item id (2) appears 2 times: [2,1] and [2,2]. Merged item now (2,3)
Item id (3) appears 1 time: [3,2]

Example 2

Input: $items1 = [[1,2], [2,3], [1,3], [3,2]]
 $items2 = [[3,1], [1,3]]
Output: [[1,8], [2,3], [3,3]]

Example 3

Input: $items1 = [[1,1], [2,2], [3,3]]
 $items2 = [[2,3], [2,4]]
Output: [[1,1], [2,9], [3,3]]

Merge Items in Raku

We iterate over the items of the two arrays and store in a hash (%total) the quantities. At the end, we reorganize the hash into two 2-D arrays of positive integers (to retrieve the input data format).

sub merge-items (@in1, @in2) {
 my %total;
 for (|@in1, |@in2) -> @items {
 %total{@items[0]} += @items[1];
 }
 return map { ($_, %total{$_}) }, %total.keys.sort;
}

my @tests = (((1,1), (2,1), (3,2)), ((2,2), (1,3))),
 (((1,2), (2,3), (1,3), (3,2)), ((3,1), (1,3))),
 (((1,1), (2,2), (3,3)), ((2,3), (2,4)));
for @tests -> @test {
 printf "%-15s - %-10s => ", "@test[0]", "@test[1]";
 say merge-items @test[0], @test[1];
}

This program displays the following output:

$ raku ./merge-items.raku
1 1 2 1 3 2 - 2 2 1 3 => ((1 4) (2 3) (3 2))
1 2 2 3 1 3 3 2 - 3 1 1 3 => ((1 8) (2 3) (3 3))
1 1 2 2 3 3 - 2 3 2 4 => ((1 1) (2 9) (3 3))

Merge Items in Perl

This is a port to Perl of the above Raku program.

sub merge_items {
 my %total;
 for my $in (@_) {
 for my $items (@$in) {
 $total{$items->[0]} += $items->[1];
 }
 }
 return map { "[$_ $total{$_}] " } sort keys %total;
}

my @tests = ([[[1,1], [2,1], [3,2]], [[2,2], [1,3]]],
 [[[1,2], [2,3], [1,3], [3,2]], [[3,1], [1,3]]],
 [[[1,1], [2,2], [3,3]], [[2,3], [2,4]]]);
for my $test (@tests) {
 printf "%-3s %-3s => ", "[$test->[0][0][0]", "$test->[0][0][1]] ...";
 say merge_items @$test[0], @$test[1];
}

Note that, when printing the input test data, the program displays only the first item (the first pair) of each test.

This program displays the following output:

$ perl ./merge-items.pl
[1 1] ... => [1 4] [2 3] [3 2]
[1 2] ... => [1 8] [2 3] [3 3]
[1 1] ... => [1 1] [2 9] [3 3]

Wrapping up

The next week Perl Weekly Challenge will start soon. If you want to participate in this challenge, please check https://perlweeklychallenge.org/ and make sure you answer the challenge before 23:59 BST (British summer time) on April 14, 2024. And, please, also spread the word about the Perl Weekly Challenge if you can.

 Perl Weekly Challenge 263: Target Index

blogs.perl.org

 Published by laurent_r
 on Tuesday 02 April 2024 18:01

 These are some answers to the Week 263, Task 1, of the Perl Weekly Challenge organized by Mohammad S. Anwar.

Spoiler Alert: This weekly challenge deadline is due in a few days from now (on April 7, 2024 at 23:59). This blog post provides some solutions to this challenge. Please don’t read on if you intend to complete the challenge on your own.

Task 1: Target Index

You are given an array of integers, @ints and a target element $k.

Write a script to return the list of indices in the sorted array where the element is same as the given target element.

Example 1

Input: @ints = (1, 5, 3, 2, 4, 2), $k = 2
Output: (1, 2)

Sorted array: (1, 2, 2, 3, 4, 5)
Target indices: (1, 2) as $ints[1] = 2 and $k[2] = 2

Example 2

Input: @ints = (1, 2, 4, 3, 5), $k = 6
Output: ()

No element in the given array matching the given target.

Example 3

Input: @ints = (5, 3, 2, 4, 2, 1), $k = 4
Output: (4)

Sorted array: (1, 2, 2, 3, 4, 5)
Target index: (4) as $ints[4] = 4

In theory, it is not necessary to sort the input array. We could simply count the number of items that are less than the target value and those which are equal to the target value. This is algorithmically simpler and probably faster (at least for large arrays). However, with the small input arrays of the examples, there is no need for performance optimization. So we will use the built-in sort functions of Perl and Raku.

Target Index in Raku

We simply use the sort method to sort the input array and the grep routine as a filter to select the subscripts in the sorted array for which the values are equal to the target.

sub find-index ($target, @in) {
 my @sorted = @in.sort;
 my @out = grep {@sorted[$_] == $target}, 0..@sorted.end;
 return @out;
}

my @tests = (2, (1, 5, 3, 2, 4, 2)),
 (6, (1, 2, 4, 3, 5)),
 (4, (5, 3, 2, 4, 2, 1));
for @tests -> @test {
 printf "%d - %-15s => ", @test[0], "@test[1]";
 say find-index @test[0], @test[1];
}

This program displays the following output:

$ raku ./find-index.raku
2 - 1 5 3 2 4 2 => [1 2]
6 - 1 2 4 3 5 => []
4 - 5 3 2 4 2 1 => [4]

Target Index in Perl

This is a port to Perl of the above Raku program.

use strict;
use warnings;
use feature 'say';

sub find_index {
 my $target = shift;
 my @sorted = sort { $a <=> $b } @_;
 my @out = grep {$sorted[$_] == $target} 0..$#sorted;
 return "@out" || "()";
}

my @tests = ([2, [1, 5, 3, 2, 4, 2]],
 [6, [1, 2, 4, 3, 5]],
 [4, [5, 3, 2, 4, 2, 1]]);
for my $test (@tests) {
 printf "%d - %-15s => ", $test->[0], "@{$test->[1]}";
 say find_index @$test[0], @{$test->[1]};
}

This program displays the following output:

$ perl ./find-index.pl
2 - 1 5 3 2 4 2 => 1 2
6 - 1 2 4 3 5 => ()
4 - 5 3 2 4 2 1 => 4

Wrapping up

The next week Perl Weekly Challenge will start soon. If you want to participate in this challenge, please check https://perlweeklychallenge.org/ and make sure you answer the challenge before 23:59 BST (British summer time) on April 14, 2024. And, please, also spread the word about the Perl Weekly Challenge if you can.

 A FOSS Ecosystem Checklist for the Benefit of Maintainer Sustainability

blogs.perl.org

 Published by Salve J. Nilsen
 on Tuesday 02 April 2024 13:20

 	Maintainers and authors are found everywhere throughout our dependency trees. This includes the authors of the tooling others use for maintaining, building, testing, writing and running the infrastructure they depend on. Even maintainers depend on other maintainers.
	Maintainers’ mental health and well-being is also a dependency.
	So is their outlook on the sustainability of their projects, both in personal, technical, systemic and economic respects.

This means that personal, technical, systemic and economic well-being in the end are all actual and real dependencies for the businesses that rely on these people and their projects.

What can an ecosystem provide to make the lives of these maintainers easier in this regard?

…continued

 Minor fixups to S_trie_bitmap_set_folded()

Perl commits on GitHub

 Published by iabyn
 on Tuesday 02 April 2024 10:14

 Minor fixups to S_trie_bitmap_set_folded()

This is a new static function which replaces a similar macro. Yves
pointed out that 'uvc' wasn't a good name for a variable which isn't of
type UV, and Hugo pointed out that a (U8) cast was redundant.

 Perl Weekly #662 - TPRC in Las Vegas

dev.to #perl

 Published by Gabor Szabo
 on Monday 01 April 2024 04:57

 Originally published at Perl Weekly 662

Hi there,

How time flies, it is incredible. It feels like we just attended TPRC in Toronto. Well the next edition is coming soon, June 24-28, 2024, to be very precise. At the end of the conference in Toronto last year, I was determined to attend the next one in Las Vegas. As we all know, you can't plan everything and execute it too as per your wish. Honestly speaking, it is the only annual event where you get to meet and greet all the big guns. I would recommend everyone who can afford to attend, must book the ticket and enjoy the Early Bird offer.

In the last edition of the weekly newsletter, Perl Toolchain Summit 2024 was discussed in details. There was even call for sponsors for the event as well. I know how hard it is to find a sponsor these days. I remember there was a time when you see sponsor desks all over at the entrance of event. Before, the name of event was enough to bring in sponsors but time has changed and you need to share reasons to find the sponsor. Thank you, Olaf Alders, for the dedidated blog post to gather the support and sponsors for the event. This year, it is happening in Lisbon, Portugal. Not far from where I am based but it is invite-only event. Having said, anyone interested to be part of the group, can start contributing to the Perl toolchain.

Talking about sponsors, I made an appeal for sponsor, Nov'23, for my pet project, The Weekly Challenge - Perl & Raku. I did receive couple of offers but nothing materialised unfortunately. The exercise taught me a lesson, though. In order to find a corporate sponsor, one need to be a registered entity. Since I ran the project single handedly for 5 years now with zero experience of running and managing a registered entity, I find it involves lot of paper works and an accountant to look after finance matters. As you have guessed it correctly, this needs funding too. So I am going around the circle and not getting anywhere. I then decided to submit the project for Outreachy 2024 sponsored by TPF. In the past, Open Food Facts, is the choosen one and is likely to be the case this time too. Time to start fresh again ...

Today is the last day of long Easter Holiday in England. I had planned so much to do in 4 days break but could only managed to do few. I am happy the school is still on long break at least. I can enjoy Monday for a change. How was your weekend?

Enjoy rest of the newsletter and look after yourself.

--

 Your editor: Mohammad Sajid Anwar.

 Announcements

 TPRC/Science Track Submission Dates and Deadlines Coming Fast!

Talk submissions are still open, and we are seeking proposals on a wide variety of subjects. This includes language features, personal projects, applications like Koha, and anything that may be of general interest to Perl and Raku programmers.

 Articles

 This Week in PSC (142)

Thanks to the weekly update, we get regular news what is happening behind the closed door.

 Amazon Links and Buttons

Do you want to know the story behind the CPAN module Amazon::Sites? This is inspirational, you don't want to skip it.

 5 Reasons to Sponsor the Perl Toolchain Summit

It’s that time of year again. In a few weeks, dozens of Perl hackers will be meeting in Lisbon, Portugal to hack furiously on the Perl Toolchain. Here are 5 reasons why you should sponsor the Perl Toolchain Summit.

 Hotel hotspot hijinks

Ever been staying at a hotel and gotten annoyed that you always have to open a browser to log in for wireless access? Find the solution in this post.

 The Weekly Challenge

The Weekly Challenge by Mohammad Sajid Anwar will help you step out of your comfort-zone. We pick one champion at the end of the month from all of the contributors during the month.

 The Weekly Challenge - 263

Welcome to a new week with a couple of fun tasks: "Target Index" and "Merge Items". If you are new to the weekly challenge, why not join us and have fun every week? For more information, please read the FAQ.

 RECAP - The Weekly Challenge - 262

Enjoy a quick recap of last week's contributions by Team PWC dealing with the "Max Positive Negative" and "Count Equal Divisible" tasks in Perl and Raku. You will find plenty of solutions to keep you busy.

 TWC262

Simple map{} can be handy and makes it one liner in Perl. Nice approach.

 Positively Equal

Fully verbose and easy to follow solutions in Raku complete with links to official Raku documents. Well done.

 Grep it once, grep it twice

Fun with multiple grep, it makes code easy to read. Thanks for sharing.

 Positive, Negative or Divisible?

Good old friend CPAN is helping solve the solutions. Smart move.

 Perl Weekly Challenge 262: Max Positive Negative

Simple grep is enough to get the job done. Nice narration.

 Perl Weekly Challenge 262: Count Equal Divisible

Straight forward multilayers for-loop and no gimmicks. Thanks for sharing.

 another short one!

Another opportunity to show off the power of Raku. Keep it up great work.

 Perl Weekly Challenge 262

Master of Perl one-liners, this time he gets the help of CPAN. End result is elegant solution.

 Counting to the Max!

Cooking blog? What a creative thought process. Really enjoyable post, you don't want to miss it.

 Plus versus minus

Pure Perl solution with just basic language feature. DIY tool for you try as well.

 The Weekly Challenge #262

Simple task analysis and implementation. Plain english anyone can follow. Well done.

 Count Max, Type O Negative

Master of multiple languages, this week we get varieties in the post. Highly recommended.

 The maximum divisible

Normally post only talk about Python solutions but you also get the Perl solutions. I find Python cute.

 Rakudo

 2024.13 Veyoring Again

 Weekly collections

 NICEPERL's lists

Great CPAN modules released last week;
MetaCPAN weekly report;
StackOverflow Perl report.

You joined the Perl Weekly to get weekly e-mails about the Perl programming language and related topics.

Want to see more? See the archives of all the issues.

Not yet subscribed to the newsletter? Join us free of charge!

(C) Copyright Gabor Szabo

The articles are copyright the respective authors.

 The maximum divisible

dev.to #perl

 Published by Simon Green
 on Sunday 31 March 2024 11:43

 Weekly Challenge 262

Happy 6th birthday Team PWC!

Each week Mohammad S. Anwar sends out The Weekly Challenge, a chance for all of us to come up with solutions to two weekly tasks. My solutions are written in Python first, and then converted to Perl. It's a great way for us all to practice some coding.

Challenge, My solutions

 Task 1: Max Positive Negative

 Task

You are given an array of integers, @ints.

Write a script to return the maximum number of either positive or negative integers in the given array.

 My solution

A nice simple task to start this week. Count the number of negative integers, and store that as neg_count. I then count the number of positive integers, storing that as pos_count. Finally I return the maximum of those two values.

def max_type(ints: list) -> int:
 neg_count = pos_count = 0
 for i in ints:
 if i < 0:
 neg_count += 1
 elif i > 0:
 pos_count += 1

 return max(neg_count, pos_count)

 Examples

$./ch-1.py -3 1 2 -1 3 -2 4
4

$./ch-1.py -1 -2 -3 1
3

$./ch-1.py 1 2
2

 Task 2: Count Equal Divisible

 Task

You are given an array of integers, @ints and an integer $k.

Write a script to return the number of pairs (i, j) where

	0 <= i < j < size of @ints
	ints[i] == ints[j]
	
i × j is divisible by k

 My solution

In Python, this can be done in a single command, due to it's list comprehension feature. I have an outer loop i from 0 to two less than the length of the array (the second last position), and an inner loop j from i + 1 to one less than the length of array. For each value of i and j I check that the numbers at the position i and j are equal and that i × j is divisible by k.

def equal_div(ints: list, k: int) -> int:
 count = sum(1
 for i in range(len(ints)-1)
 for j in range(i+1, len(ints))
 if ints[i] == ints[j] and i * j % k == 0
)

 return count

If the lists were larger, I could optimize the computation by splitting the lists based the value. However, it is assumed that the number of items in ints is relatively small.

 Examples

$./ch-2.py 3 1 2 2 2 1 3 2
4

$./ch-2.py 1 2 3 2
0

 (cdlxxxix) 4 great CPAN modules released last week

Niceperl

 Published by Unknown
 on Saturday 30 March 2024 22:52

 Updates for great CPAN modules released last week. A module is considered great if its favorites count is greater or equal than 12.

	
CPAN::Audit - Audit CPAN distributions for known vulnerabilities
	Version: 20240329.002 on 2024-03-29, with 13 votes
	Previous CPAN version: 20240318.001 was 10 days before
	Author: BDFOY

	
SPVM - SPVM Language
	Version: 0.989096 on 2024-03-27, with 31 votes
	Previous CPAN version: 0.989092 was 4 days before
	Author: KIMOTO

	
URI - Uniform Resource Identifiers (absolute and relative)
	Version: 5.28 on 2024-03-27, with 113 votes
	Previous CPAN version: 5.27 was 1 month, 18 days before
	Author: OALDERS

	
WWW::Mechanize::Chrome - automate the Chrome browser
	Version: 0.73 on 2024-03-29, with 22 votes
	Previous CPAN version: 0.72 was 4 months, 8 days before
	Author: CORION

 (dlxxxiv) metacpan weekly report - perl

Niceperl

 Published by Unknown
 on Saturday 30 March 2024 22:50

 This is the weekly favourites list of CPAN distributions. Votes count: 58

Week's winner: perl (+2)

Build date: 2024/03/30 21:50:19 GMT

Clicked for first time:

	Devel::Confess::Patch::UseDataDumpSkipObjects - Use Data::Dump::SkipObjects to stringify some objects
	File::DirList - provide a sorted list of directory content
	GDS2 - Process GDS2 files
	String::Secret - secret string wrapper to mask secret from logger

Increasing its reputation:

	App::cpm (+1=71)
	App::perlimports (+1=14)
	App::PerlNitpick (+1=3)
	assign (+1=10)
	Bio::Phylo (+1=8)
	Carp (+1=71)
	Carp::Always (+1=36)
	CGI (+1=44)
	Data::Formatter::Text (+1=2)
	Data::Validate::IP (+1=13)
	DBIx::Simple (+1=36)
	Devel::Confess (+1=36)
	Devel::ebug (+1=11)
	Devel::IPerl (+1=23)
	Devel::ptkdb (+1=9)
	Devel::REPL (+1=70)
	Dotenv (+1=10)
	Error::Pure (+1=2)
	FFI::Platypus (+1=64)
	File::Listing (+1=5)
	Furl (+1=43)
	GD (+1=28)
	GeoIP2 (+1=16)
	Google::API::Client (+1=6)
	HTML::TreeBuilder::XPath (+1=23)
	IO::Interactive (+1=16)
	IO::Socket::SSL (+1=49)
	Jenkins::API (+1=8)
	JIRA::REST (+1=17)
	JSON::XS (+1=118)
	Mojo::SQLite (+1=26)
	MooseX::Role::Parameterized (+1=23)
	Net::Domain::TLD (+1=2)
	Net::FTPSSL (+1=4)
	Object::Pad (+1=42)
	PadWalker (+1=27)
	Path::Tiny (+1=188)
	perl (+2=418)
	REST::Client (+1=19)
	Spreadsheet::ParseExcel (+1=40)
	SQL::Translator (+1=43)
	StreamFinder (+1=6)
	Symbol::Table (+1=2)
	Syntax::Keyword::Try (+1=42)
	Template::Tiny (+1=10)
	Text::CSV::Hashify (+1=2)
	Text::ParseWords (+1=14)
	Thread::CSP (+1=3)
	Variable::OnDestruct (+1=2)
	XML::Feed (+1=10)
	XML::LibXML (+1=100)
	XML::TreePP (+1=6)
	XML::Twig (+1=62)

 (dcvii) stackoverflow perl report

Niceperl

 Published by Unknown
 on Saturday 30 March 2024 22:49

 These are the five most rated questions at Stack Overflow last week.

Between brackets: [question score / answers count]

Build date: 2024-03-30 21:49:18 GMT

	Cross compiling perl for Android ld.lld: error: unable to find library -lpthread - [2/0]
	Regex for deconstructing SQL where statement - [1/2]
	Perl with Selenium: cannot save the Web page with Ctrl+S - [1/0]
	How to ignore perm errors with Path::Tiny 'visit'? (Windows) - [1/0]
	Strawberry Perl using a separate winlibs distro - [0/1]

 Amazon Links and Buttons

Perl Hacks

 Published by Dave Cross
 on Saturday 30 March 2024 12:59

 I’ve spent more than a reasonable amount of time thinking about Amazon links over the last three or four years.

It started with the Perl School web site. Obviously, I knew that the book page needed a link to Amazon – so people could buy the books if they wanted to – but that’s complicated by the fact that Amazon has so many different sites and I have no way of knowing which site is local to anyone who visits my web site. I had the same problem when I built a web site for George and the Smart Home. And again when I created a site for Will Sowman’s books. At some point soon, I’ll also want to put book pages on the Clapham Tech Press web site – and that will have exactly the same problem.

That’s the user-visible side of the equation. There are other reasons for wanting to know about all of the existing Amazon sites. One of the best ones is because I want to track royalties from the various sites and apportion them to the right authors.

On the Perl School site, I solved the problem by creating a database table which contains data about the sites that I knew about at the time. Then there’s a DBIC result class and that result set is passed to the book page template, which builds “buy” buttons for each site found in the result set. That works, but it’s not very portable. When it came to the other sites, I found myself writing a “make_buttons” program which used the Perl School database table to generate some HTML which I then copied into the relevant template.

But that never sat well with me. It made me uncomfortable that all of my book sites relied on a database table that existed in one of my repos that, really, has no connection to those other sites. I thought briefly about duplicating the table into the other repos, but that set off the “Don’t Repeat Yourself” alarm in my head, so I backed away from that idea pretty quickly.

It would be great if Amazon had an API for this information. But, unless I’m blind, it seems to be the only API that they don’t provide.

So, currently, what I’ve done is to encapsulate the data in a CPAN module. It’s called Amazon::Sites and I’ve been releasing slowly-improving versions of it over the last week or so – and it’s finally complete enough that I can use it to replace my database table. It might even make the code for my various book sites easier to maintain.

Maybe it will be useful to you too.

Here’s how you use it:
use Amazon::Sites;

my $sites = Amazon::Sites->new;
my @sites = $sites->sites;
my %sites = $sites->sites_hash;
my @codes = $sites->codes;

my $site = $sites->site('UK');
say $site->currency; # GBP
say $site->tldr; # co.uk
etc

my %urls = $sites->asin_urls('XXXXXXX');
say $urls{UK}; # https://amazon.co.uk/dp/XXXXXXX
Once you’ve created a class of the object, you have access to a few useful methods:

	sites – returns a list of all of the sites the object knows about. Each element in the list is an Amazon::Site object
	sites_hash – returns the same information, but as a hash. The key is a two-letter ISO country code and the value is an Amazon::Site object
	codes – returns a list of all of the country codes that the object knows about
	site(country_code) – expects a two-letter ISO country code and returns the Amazon::Site object for that country’s Amazon site

The Amazon::Site object has a number of useful attributes:

	code – the country code
	country – the country’s name in English
	currency – the ISO code for the currency used on that site
	tldn – the top-level domain name that the Amazon site uses (e.g. .com or .co.uk)
	domain – the full domain that the Amazon site used (e.g. amazon.com or amazon.co.uk)

Amazon::Site also has a “asin_url()” method. You pass it an ASIN (that’s the unique identifier that Amazon uses for every product on its site) and it returns the full URL of that product on that site. There’s a similar “asin_urls()” (note the “s” at the end) on the Amazon::Sites object. That returns a hash of URLs for all of the sites the object knows about. The key is the country code and the value is the URL in that country.

You can also filter the list of Amazon sites that you’re interested in when creating your Amazon::Sites object. The constructor takes optional “include” and “exclude” arguments. Each of them is a reference to an array of ISO country codes. For reasons that are, I hope, obvious, you can only use one of those options at a time.

If you’re an Amazon Associate, you can make money by including your “associate code” in Amazon URLs that you share with people. Amazon::Sites deals with that too. An Amazon associate code is associated with one Amazon site. So the constructor method has an optional “assoc_codes” argument which is a hash mapping country codes to associate codes. If you have set up associate codes in your Amazon::Sites object, then your associate code will be included in any URLs that are generated by the modules – as long as the URL is for one of the sites that you have an associate code for.

That’s all it does at the moment. It addresses most of my needs. There’s one more feature I might add soon. I’d like to have template processing built-in – so if I have a template and an Amazon::Sites object, I can easily process that template for every site that the object knows about.

So that’s the class. I hope someone out there finds it useful. If you think it’s almost useful, but there’s a feature missing then please let me know (or even send a pull request).

But there are a couple of other things I’d like to mention about how I wrote this class.

Firstly, this is written using the new perlclass OO syntax. Specifically, it uses Feature::Compat::Class, so you can use it on versions of Perl back to 5.26. It’s true that the new syntax doesn’t have all the features that you’d get with something like Moose, but I love using it – and over the next few versions of Perl, it will only get better and better. If you haven’t tried the new syntax yet, then I recommend you have a look at it.

Secondly, this is the first new CPAN distribution I’ve written since I’ve had my subscription to GitHub Copilot. And I’m really impressed at how much faster I was using Copilot. As I said, I was using experimental new Perl syntax, so I was impressed at how well Copilot understood what I was doing. I lost count of the number of times I typed the name of a new method and Copilot instantly wrote the code for me – an 95% of the time the code it wrote was spot on. AI programming support is here and it’s good. If you’re not using it yet, then you’re losing out.

I’m told a good blog post needs a “call to action”. This one has three:

	Start using Perl’s new class syntax
	Look at GitHub Copilot and similar tools
	Please use my new module

The post Amazon Links and Buttons first appeared on Perl Hacks.

 Hotel hotspot hijinks

perl.com

 Published
 on Tuesday 26 March 2024 18:00

Ever been staying at a hotel and gotten annoyed that you always have to open
a browser to log in for wireless access? Yup, me too. A recent instance
was particularly frustrating and I had to pull out my favourite Swiss Army
chainsaw in order to make
my life a bit easier.

The situation

So, the background story is that I was staying at a hotel in the mountains
for a few days. As is the fortunate case these days1,
the hotel had wireless access. The weird part, though, was that each room
had a separate username and password. “Fair enough”, I thought and promptly
opened my laptop and then Firefox to enter my login data to get the
dearly-awaited connectivity. Using Firefox (or any other browser for that
matter) was necessary because the login page was accessed via a captive
portal. That’s the thing you
get directed through when you see a login banner like this pop up in your
browser:

[image: Firefox captive portal login banner]

That’s fine, I thought, and went merrily on with my day.

The problem

The problem started the following day. After getting up and waking up my
laptop, I wasn’t able to read my email2, or read chat on
irc3, see my messages via
Signal, or use the internet at
all4.

Also, ping greeted me with Destination Net Prohibited:

$ ping www.heise.de
PING www.heise.de (193.99.144.85) 56(84) bytes of data.
From logout.hotspot.lan (192.168.168.1) icmp_seq=1 Destination Net Prohibited
From logout.hotspot.lan (192.168.168.1) icmp_seq=2 Destination Net Prohibited
From logout.hotspot.lan (192.168.168.1) icmp_seq=3 Destination Net Prohibited
^C
--- www.heise.de ping statistics ---
3 packets transmitted, 0 received, +3 errors, 100% packet loss, time 2002ms

Obviously, I wasn’t online.

That’s when I noticed the Firefox captive portal login banner (see image
above) again. Oh, I have to log in again, that’s weird. Upon clicking on
the “Open Network Login Page” button, I was logged in automatically. No
need to enter the login details again. That’s also weird, I thought,
because if the login is automatic, why do I have to visit the login page
again at all?

I put my laptop to sleep to go for a walk around the village, get some
groceries, and enjoy the mountain air5. Upon my return, I had
to log in again to get wireless access. I was slowly starting to get a
bit miffed. My guess is
that the MAC address from the relevant end-user device is removed from the
access list fairly quickly, perhaps on the order of an hour or
two6, and thus network connectivity is cut rather
promptly.

One issue that made my situation even worse is that I often have several
browser windows open at the same time; usually because I have several trains
of thought on the go at once and each window contains information relevant
to each train of thought. The thing is, only one of the browser windows
actually shows the (automatically appearing) captive portal login banner.
Finding the window with the banner was rather time consuming.

Ok, this was starting to get silly and a bit annoying. Time to automate the
annoyance away. WWW::Mechanize
to the rescue!

[image: WWW::Mechanize as a comic book super hero; generated by DALL-E]

WWW::Mechanize as a comic book super hero; generated by DALL-E.

The solution

Why choose WWW::Mechanize? Well, I’ve got experience with it (I used to
use a similar process to automatically log in to the ICE
train in Germany when I
used to commute to work before the
pandemic), I know I can
use it to submit data into simple HTML
forms,
and Perl is my go-to language for this kind of
automation.

So, how to get started with automating the login process? The simple
solution: quit Firefox so that all browser windows are closed, put the
computer to sleep and then go for a walk for a couple of hours.

Upon my return, I just needed to use a combination of perl -de0 to start a
REPL-like
environment to play around in and perldoc to read the extensive
WWW::Mechanize documentation.

The first attempt at trying to trigger a connection to the captive portal
didn’t go well:

└> perl -de0

Loading DB routines from perl5db.pl version 1.55
Editor support available.

Enter h or 'h h' for help, or 'man perldebug' for more help.

main::(-e:1): 0
 DB<1> use WWW::Mechanize;

 DB<2> $mech = WWW::Mechanize->new;

 DB<3> $mech->get('https://google.com');

Error GETing https://google.com: Can't connect to google.com:443 (SSL
connect attempt failed) at (eval
22)[/home/cochrane/perl5/perlbrew/perls/perl-5.30.1/lib/5.30.1/perl5db.pl:738]
line 2.

Ok, so we need to use HTTP and avoid HTTPS. Good to know.

Just using HTTP worked much better:

 DB<4> x $mech->get('http://google.com')
0 HTTP::Response=HASH(0x55a95f5048c0)
<snip>
lots of details; you really don't want to see this
</snip>

That’s what we like to see! We’re at least getting stuff back now. Having
a look at the page’s title, we get:

 DB<5> x $mech->title();
0 'myadvise hotspot > login'

Yup, that’s a login page. Dumping the page’s content with

 DB<5> x $mech->content();
<snip>
lots of HTML content
</snip>

we get to see what we’ve got to play with. The main things to note about
the content (which I’m not showing because it’s too much detail and I want
to protect the innocent) are:

	we have a form called login

<form name="login" action="http://login.hotspot.lan/login" method="post">

	we have a username field with the name username

<input style="width: 80px" name="username" type="text" value=""/>

	and we have a password field with the name password

<input style="width: 80px" name="password" type="password"/>

This gives us enough information to be able to submit the form using the
relevant login data.

Aside: interestingly enough, the fields are in English even though the site
is a German one. I guess standardising the fields on English can be useful
when programming.

To submit the form, we use WWW::Mechanize’s
submit_form()
method (the call to which I’ve formatted nicely here to make things easier
to read):

$mech->submit_form(
 form_name => 'login',
 fields => {
 username => 'username-for-room',
 password => 'password-for-room',
 }
);

We can check if the form submission was successful by asking the
HTTP::Response if things went
well:

 DB<7> x $mech->res->is_success;
0 1

Looking good so far. Let’s see if ping works as expected

$ ping www.heise.de
PING www.heise.de (193.99.144.85) 56(84) bytes of data.
64 bytes from www.heise.de (193.99.144.85): icmp_seq=1 ttl=247 time=20.6 ms
64 bytes from www.heise.de (193.99.144.85): icmp_seq=2 ttl=247 time=13.9 ms
^C
--- www.heise.de ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 13.941/17.281/20.621/3.340 ms

Yes! In other words: we’re in! That was
easy. ☺

Putting everything together (and cleaning up the code a bit), I ended up
with this:

use strict;
use warnings;

use WWW::Mechanize;

my $mech = WWW::Mechanize->new;
$mech->get('http://google.com');

check that we have the login page and not Google or something else
i.e. we're not logged in
if ($mech->title() =~ 'login') {
 $mech->submit_form(
 form_name => 'login',
 fields => {
 username => '<username-for-room>',
 password => '<password-for-room>'
 }
);
 if ($mech->res->is_success) {
 print "Login successful\n";
 }
 else {
 print "Login failed\n";
 }
}
else {
 print "Already logged in\n";
}

Now I can just run the script every time I wake my laptop back up and I’m
back online. Yay!

From a security perspective it’s a bit weird that the username and password
are obviously tied to the room number. In other words, I could probably
use the neighbouring room’s account just as easily (I guess: I couldn’t
be bothered checking in the end).

The conclusion

Well, this script certainly saved me some time and hassle when waking up my
laptop from the suspend state. Also, it was fun working out what pieces of
the puzzle were necessary in order to build a solution. Perl saves the
day7 again!

Originally posted on https://peateasea.de.

	Remember when finding a hotel with any wireless connectivity was a total mission? Sort of like the days when finding a power outlet at an airport to charge a laptop was really difficult and one ended up sitting on the floor next to a utility room where the cleaning staff would normally plug in a vacuum cleaner. Ah, those were the days 😉. Put another way: humanity has come a looong way.
 [return]
	I use mutt; it’s fast and one only needs to use text for email. Right? Right?
 [return]
	I also use irssi for IRC. Look, I’ve been around a while, ok?
 [return]
	I’m one of those geeks who live on the terminal, hence I tend to use a lot of terminal-based tools to get things done.
 [return]
	I don’t mean this ironically: because of the forests and the distance away from any kind of metropolis, the air is much fresher. Ever notice that the air in European cities is just awful?
 [return]
	Later, I’d tried putting my computer to sleep and then waking it up a few minutes later. The connection was still alive, so my best guess is that the timeout to keep connections alive and keep a MAC address registered is on the order of hours, but not more than two or three hours, because even such short periods of inactivity required login again. A later test showed that the timeout was after one hour.
 [return]
	Well, it saved the week really.
 [return]

 5 Reasons to Sponsor the Perl Toolchain Summit

perl.com

 Published
 on Monday 25 March 2024 18:00

Photo © Salve J. Nilsen, 2023, CC-BY-NC-4.0

TL;DR Please read and share the
prospectus for the Perl Toolchain Summit.

It’s that time of year again. In a few weeks, dozens of Perl hackers will be
meeting in Lisbon,
Portugal
to hack furiously on the Perl Toolchain. I will be there as well, working on
MetaCPAN. Most of the other core MetaCPAN developers
will be there as well, as is the case most years. We get lots of work done. I
usually blog about it. To get an idea of what goes on, you can check out my
2023 Perl Toolchain Summit
report
and Salve J. Nilsen’s
photos.

The summit is a great opportunity for your company to get involved and support
the Perl community. Here are 5 reasons why you should sponsor the Perl
Toolchain Summit.

1) Synchronous Communication

The developers who maintain CPAN and its associated tools and service are
scattered all across the globe and, more importantly, in different time zones.
Most of us know that it’s entirely possible to get things done at our day jobs
while working remotely. It’s not always this easy when trying to co-ordinate
the time, efforts and schedules of volunteers. The Perl Toolchain Summit is the
only time of the year when most of these developers are in the same room
together. The event gives them the luxury of synchronous, rather than
asynchronous communication. Imagine walking across the room to talk to someone
rather than waiting for someone who lives across an ocean to find the free time
to respond to a GitHub issue or a chat message. Problems can be solved much
faster when you get so many stakeholders and decision makers in the same room.

2) Face Time

We also know that communication can be hard and it doesn’t necessarily get
easier when much of it happens by text. Giving the Toolchain developers the
chance to work face to face means they have a greater understanding and
appreciation of whom they are dealing with. The cameraderie which develops at
this event allows the Toolchain developers to communicate freely and well when
they’re not all together. I’m amazed at how well everyone gets along for the
part of the year when we’re not in the same room. It’s a very special group of
people.

3) Consensus

Some big decisions require consensus. Consensus requires getting input from
many people. Being able to call a meeting to discuss topic X with all of the
relevant people is kind of a big deal. Past toolchain summits have given us
documents which offer a guide on how to move forward. The Lancaster
Consensus
is such a document.

4) Distraction-free Time

Most Open Source developers are juggling a bunch of things in their day to day
lives and hacking on software is just one of those things. Many of us rarely
get more than a few hours in a given week to work distraction-free on something
which interests us. Sometimes we don’t even have that luxury. The Toolchain
summit gives developers 3-4 days of time to keep barreling ahead on critical
software. Imagine what you could do with a hobby project when all you had to
worry about was getting up in the morning, having a prepared meal and then
plugging in your laptop and consulting the experts sitting around you? That’s
exactly what this event is like. It also has the side effect of increasing the
cadence of a project in the weeks leading up to the Toolchain where everyone
prepares ahead of time, in order to maximize their creativity upon arrival.

5) It Keeps the Toolchain Moving Forward

The Perl Toolchain Summit works to ensure that the parts of the Perl Ecosystem
which developers (and businesses) around the world rely on, are cared for.
Some problems are thorny. They require time. They require expertise. They
require help and possibly a shoulder to cry on. If your business relies on
Perl, then it relies on the toolchain. It relies on a healthy and secure
ecosystem. These are critical things, but they’re also boring. They’re not
flashy new apps. They’re not going to get you on the front page of Hacker News.
They are, however, going to allow people and businesses around the world to
carry on with their lives, blissfully unaware of the efforts which are going
into the software which underpins some part of their existence. Sponsoring this
event allows you to support the boring, important parts of Perl.

By now you’re probably thinking “shut up and take my money”. That’s wonderful!
Sponsoring the event is easy. Please have a look at the
prospectus.
It has more information on this event and it has everything you need to get
started as a sponsor. Kindly pass the prospectus along to your friends and
colleagues and together we can work together to keep the Perl Toolchain moving
forward.

 A curious bug when generating mails with long filename attachments

domm (Perl and other tech)

 Published
 on Monday 25 March 2024 17:11

 Some app I work on needs to export some data and send it to customers in a traceable way. We need to make sure that we keep track of each filename, and also make sure that the customers can (maybe even months later) tell us which export file might need some handling. So we decided to use a rather verbose filename containing the customer name, a timestamp and the uuid of the export job eg export_some_customer_2024-03-25T16:20:12_fcdc290d-50cb-403d-981d-51c8e871.zip.

Generating and sending such a mail is quite easy using eg Email::Stuffer and Email::Sender::Simple:

 my $filename = 'export_some_customer_2024-03-25T16:20:12_fcdc290d-50cb-403d-981d-51c8e871.zip';

 my $email = Email::Stuffer
 ->to($customer_email)
 ->cc($our_archive_email)
 ->from($sender)
 ->subject("Your data")
 ->text_body("Please find your data attached")
 ->attach_file($filename)
 ->email;

 Email::Sender::Simple->send($email, { transport => $smtp });

I tested this using a local maildev and also via google mail (as we're using that for that project..). It also worked for the customers. Well, some customers...

PEBCAK?

One customer complained that they could not open the file (on Windows). The file actually is a password "protected" zip archive containing a CSV, so I assumed they had some problems with that setup and provided some detailed instruction on how to open / extract that file and make sure that Windows does not mangle the extensions etc. The customer was satisfied. I grumbled a bit about Windows and customers and went on to do other stuff.

Some time later, due to some stupidity on my part, we sent out that file as a regular CSV file (without packing it into zip). Again, the customer complained that they could not unpack the file after downloading it and adding a zip extension. That's when I started to wonder what was really going on, because I got the mail as a plain CSV file and never should the customer need to manually add an extension.

And what going on was that the customer did not get any file extensions, just a plain string, then manually added the (in that case wrong) extension zip and only then could proceed. And the customer was not using gmail, but something else.

So I tried to open the mail in mutt, and .. the attachment was indeed mangled: The filename was truncated, the extension missing.

Headers

This prompted a closer examination of the mail headers:

Content-Type: application/octet-stream;
 name*0=export_some_customer_2024-03-25T16:20:12_fcdc290d-50cb-403d-981d-51c8;
 name*1=e871.zip
 name=export_some_customer_2024-03-25T16:20:12_fcdc290d-50cb-403d-981d-51c...

Ouch!

It seems that some part of the (40 years old?) email spec cannot handle long filenames, therefore they are broken into multiple lines.

And it seems that some mail clients can handle this multi line filenames, and some cannot handle them (among them mutt, which I find sad, but in this case lucky, because I'm not sure I would ever found the real bug and just assumed customer incompetence...)

Fix it

The fix was of course easy: pack the actual file (with the still long and very verbose filename) into a zip archive with a different, much shorter name.

But it was still interesting to learn that in that case the problem was not a stupid customer or an annoying OS, but the fact the email obviously needs to printable on a dot-matrix printer and therefor should not have more than 80 characters per line...

Update: dakkar pointed out the relevant RFC 2332, Section 3.

 <h3 class='likesectionHead' id='these-elements-theyre-multiplying'>These Elements, They’re Multiplying!</h3>

RabbitFarm Perl

 Published
 on Saturday 23 March 2024 20:34

 The examples used here are from the weekly challenge problem statement and
demonstrate the working solution.

 File Index

	

	
 "ch-1.pl" Defined by 1.

	

	
 "ch-2.pl" Defined by 7.

 Part 1: Element Digit Sum

You are given an array of integers, @integers. Write a script to evaluate the
absolute difference between every element and the digit sum of the entire given
array.

 The complete solution is contained in one file that has a simple structure.

 "ch-1.pl" 1≡
 	

	

 ⟨preamble 2 ⟩

 ⟨element digit sum 5 ⟩

 ⟨main 6 ⟩

 ◇

 	

	

For this problem we do not need to include very much. We’re just specifying to use the
current version of Perl, for all the latest features in the language. This fragment is
also used in Part 2.

 ⟨preamble 2 ⟩≡
 	

	

 use v5.38;

 ◇

 	

	
 Fragment
 referenced
 in 1,
 7.

	

	

First, let’s consider how we compute the digit sum for an array of integers. If we we
make sure that all multi-digit numbers are expanded into lists of digits then
this is the sum of the concatenation of all such lists, along with single digit
numbers.

 The expansion of multi-digit numbers is handled by map, and the sum is taken
with unpack and the resulting final array. A key thing to remember here is that Perl
will flatten all lists inside the array so all the results from the map will be in a list of
single digits.

 ⟨compute digit sum 3 ⟩≡
 	

	

 my $digit_sum = unpack(q/%32I*/, pack(

 q/I*/, map {split //, $_} @{$integers})

);

 ◇

 	

	
 Fragment
 referenced
 in 5.

	

	
 Defines: $digit_sum 5.

	

	
 Uses: $integers 5.

	

	

The element sum is the same procedure as the digit sum, but just without the
map.

 ⟨compute element sum 4 ⟩≡
 	

	

 my $element_sum = unpack(q/%32I*/, pack q/I*/, @{$integers});

 ◇

 	

	
 Fragment
 referenced
 in 5.

	

	
 Defines: $element_sum 5.

	

	
 Uses: $integers 5.

	

	

 ⟨element digit sum 5 ⟩≡
 	

	

 sub element_digit_sum{

 my($integers) = [@_];

 ⟨compute digit sum 3 ⟩

 ⟨compute element sum 4 ⟩

 return abs($element_sum - $digit_sum)

 }

 ◇

 	

	
 Fragment
 referenced
 in 1.

	

	
 Defines: $integers 3,
 4.

	

	
 Uses: $digit_sum 3,
 $element_sum 4.

	

	

Finally, we have a few lines of code for running some tests.

 ⟨main 6 ⟩≡
 	

	

 MAIN:{

 say element_digit_sum 1, 2, 3, 45;

 say element_digit_sum 1, 12, 3;

 say element_digit_sum 1, 2, 3, 4;

 say element_digit_sum 236, 416, 336, 350;

 }

 ◇

 	

	
 Fragment
 referenced
 in 1.

	

	

 Sample Run

 $ perl perl/ch-1.pl
36
9
0
1296

 Part 2: Multiply by Two

You are given an array of integers, @integers and an integer $start. Write a script to
do the following:

 a) Look for $start in the array @integers, if found multiply the number by
2.

 b) If not found stop the process, otherwise repeat.

 In the end return the final value.

 We’ll contain the solution in a single recursive function. The completed solution
will just have that function plus a few tests.

 "ch-2.pl" 7≡
 	

	

 ⟨preamble 2 ⟩

 ⟨search and multiply 8 ⟩

 ⟨main 9 ⟩

 ◇

 	

	

This is our principal function. As can be seen, it’s very short! The logic here is simple:
for each recursive call check for $start in the array and, if found, double $start and
keep recursing. Otherwise, return $start.

 ⟨search and multiply 8 ⟩≡
 	

	

 sub search_multiply{

 my($start) = shift;

 return $start if 0 == grep {$start == $_} @_;

 search_multiply($start + $start, @_);

 }

 ◇

 	

	
 Fragment
 referenced
 in 7.

	

	

Finally, here’s a few tests to confirm everything is working right.

 ⟨main 9 ⟩≡
 	

	

 MAIN:{

 say search_multiply 3, 5, 3, 6, 1, 12;

 say search_multiply 1, 1, 2, 3, 4;

 say search_multiply 2, 5, 6, 7;

 }

 ◇

 	

	
 Fragment
 referenced
 in 7.

	

	

 Sample Run

 $ perl ch-2.pl
24
8
2

 References

The Weekly Challenge 261
Generated Code

 <h3 class='likesectionHead' id='this-week-a-ranking-occurred'>This Week a Ranking Occurred!</h3>

RabbitFarm Perl

 Published
 on Saturday 16 March 2024 20:39

 The examples used here are from the weekly challenge problem statement and
demonstrate the working solution.

 File Index

	

	
 "ch-1.pl" Defined by 1.

	

	
 "ch-2.pl" Defined by 5.

 Part 1: Unique Occurrences

You are given an array of integers, @ints. Write a script to return 1 if the number of
occurrences of each value in the given array is unique or 0 otherwise.

 The complete solution is contained in one file that has a simple structure.

 "ch-1.pl" 1≡
 	

	

 ⟨preamble 2 ⟩

 ⟨unique occurrences 3 ⟩

 ⟨main 4 ⟩

 ◇

 	

	

For this problem we do not need to include very much. We’re specifying to use
the current version of Perl, for all the latest features. We’re also using the
boolean module, for the convenience of returning and displaying the return
values.

 This fragment is also used in Part 2.

 ⟨preamble 2 ⟩≡
 	

	

 use v5.38;

 use boolean;

 ◇

 	

	
 Fragment
 referenced
 in 1,
 5.

	

	

Here we have a single function which does essentially all the work. First we loop
through the array of numbers and count occurrences. Then the counts are
themselves used as hash keys to eliminate duplicates. If no duplicates are removed
then the number of these new keys is equal to the number of original count
values.

 ⟨unique occurrences 3 ⟩≡
 	

	

 sub unique_occurrences{

 my %occurrences;

 do{

 $occurrences{$_}++;

 } for @_;

 my %h;

 do{$h{$_} = undef} for values %occurrences;

 return boolean(values %occurrences == keys %h);

 }

 ◇

 	

	
 Fragment
 referenced
 in 1.

	

	

Finally, we have a few lines of code for running some tests.

 ⟨main 4 ⟩≡
 	

	

 MAIN:{

 say unique_occurrences 1, 2, 2, 1, 1, 3;

 say unique_occurrences 1, 2, 3;

 say unique_occurrences -2, 0, 1, -2, 1, 1, 0, 1, -2, 9;

 }

 ◇

 	

	
 Fragment
 referenced
 in 1.

	

	

 Sample Run

 $ perl perl/ch-1.pl
1
0
1

 Part 2: Dictionary Rank

You are given a word, $word. Write a script to compute the dictionary rank of the
given word.

 The solution to the second part of this week’s challenge is a little more complex
than the first part. In the solution file we define our own function for computing all
permutations of an array, which is then used to determine the dictionary
rank.

 "ch-2.pl" 5≡
 	

	

 ⟨preamble 2 ⟩

 ⟨Compute all valid permutations with Heap’s algorithm. 6 ⟩

 ⟨Determine the dictionary rank. 7 ⟩

 ⟨main 8 ⟩

 ◇

 	

	

This function is a recursive implementation of Heap’s algorithm. A lot has been written
on this algorithm, so I won’t go into much detail here.

 ⟨Compute all valid permutations with Heap’s algorithm. 6 ⟩≡
 	

	

 sub permutations{

 my($a, $k, $permutations) = @_;

 if($k == 1){

 push @{$permutations}, [@{$a}];

 return true;

 }

 else{

 permutations($a, $k - 1, $permutations);

 for my $i (0 .. $k - 2){

 if($k & 1){

 ($a->[0], $a->[$k - 1]) = ($a->[$k - 1], $a->[0]);

 }

 else{

 ($a->[$i], $a->[$k - 1]) = ($a->[$k - 1], $a->[$i]);

 }

 permutations($a, $k - 1, $permutations);

 }

 }

 }

 ◇

 	

	
 Fragment
 referenced
 in 5.

	

	

Now that we have a way to compute all permutations we will use that to determine
the dictionary rank. There is a trick here. Keep in mind that dictionaries
do not have multiple entries for repeated words! In the case of words with
repeated letters than there will be permutations that are effectively equal in
that they contain the same letters. Although they are created by permuting
equal (but different) letters for ranking purposes we will consider them the
same.

 ⟨Determine the dictionary rank. 7 ⟩≡
 	

	

 sub dictionary_rank{

 my($word) = @_;

 my $permutations = [];

 permutations [split //, $word], length($word), $permutations;

 my %h;

 do {$h{join q//, @{$_}} = undef} for @{$permutations};

 my @permutations = sort {$a cmp $b} keys %h;

 return (

 grep {$permutations[$_] eq $word} 0 .. @permutations - 1

)[0] + 1;

 }

 ◇

 	

	
 Fragment
 referenced
 in 5.

	

	

 ⟨main 8 ⟩≡
 	

	

 MAIN:{

 say dictionary_rank q/CAT/;

 say dictionary_rank q/GOOGLE/;

 say dictionary_rank q/SECRET/;

 }

 ◇

 	

	
 Fragment
 referenced
 in 5.

	

	

 Sample Run

 $ perl ch-2.pl
3
88
255

 References

The Weekly Challenge 260
Generated Code
Heap’s Algorithm

 Registration for The Perl and Raku Conference 2024 is open!

Perl Foundation News

 Published by Todd Rinaldo
 on Friday 15 March 2024 23:13

 [image:]

 The Perl and Raku Conference (formerly knwn as YAPC::NA) is going strong! This year, we are celebrating 25 years, our silver anniversary, in the Silver State, Nevada! The main conference will be in Las Vegas on June 25-27, but there will be hackathons and possibly classes on the day before and the day after the conference (June 24th and 28th), so please consider joining us for the whole week!

The backbone of this conference has always been our tracks of "traditional" talks by community members and what we have come to call the "Hallway Track" the informal exchange of ideas and camaraderie that sparks new projects and fuels collaboration.

This year, we are pleased also to host the presentation of Papers and Posters accepted by the Science Perl Journal!

Registration is open, so your ticket can now be purchased.

Talk submissions are still open, and we are seeking proposals on a wide variety of subjects. This includes language features, personal projects, applications like Koha, and anything that may be of general interest to Perl and Raku programmers. (We had juggling and origami in the past. Fun!)
* Talks can be 20 minutes or 50 minutes. Please submit through PaperCall.
* Papers and Posters follow the guidelines of the Science Perl Journal.
Links to both are also on https://tprc.us.

Speakers who are approved for a talk, paper, or poster will receive a free ticket to the event. The submission deadline is April 5th at 8pm EST, so please send us your submissions soon!

We are planning some special activities during the conference to celebrate our rich 25-year history.

Go now to https://tprc.us/ to check out what is planned and to book a room (see link to Alexis Park Resort under "Location"). Rooms start at only $75 per night, so it’s worth booking early!

The best way to register for the conference is at https://tprc2024.sched.com/tickets

Thanks,
TPRC Admins

 What's new on CPAN - February 2024

perl.com

 Published
 on Thursday 14 March 2024 21:19

Welcome to “What’s new on CPAN”, a curated look at last month’s new CPAN uploads for your reading and programming pleasure. Enjoy!

APIs & Apps

	Use GnuCash to manage membership data with App::GnuCash::MembershipUtils
	Check validity of ISBN numbers listed in a file using App::ISBN::Check
	App::MARC::Record::Stats provides an app wrapper for MARC::Record::Stats
	Change the directory in your shell script to one in a list of directory “bookmarks” using App::cdbookmark
	Perform lookups and validations on the EAN-Search database using Net::EANSearch
	Post Microsoft Teams notifications using Microsoft::Teams::WebHook

Config & Devops

	Find and build the following non-Perl dependencies via Alien:

	Cowl using Alien::Cowl
	Qhull using Alien::Qhull

Data

	DBIx::Class::FilterColumn::Encrypt transparently encrypts columns for DBIx::Class
	Data::Login encapsulates some authentication/authorization data
	Remove problematic characters from filenames with Data::Sah::FilterBundle::Filename::Safe
	Data::Structure::Deserialize::Auto deserializes perl, JSON, YAML or TOML data structures from strings or files
	Data::Transfigure allows you to write reusable rules (“transfigurators”) to modify arbitrary data structures
	File::Util::Rename renames files in different ways (1 so far!)
	Yet more modules that categorize other CPAN modules this month:

	Acme::CPANModules::ArrayData for modules related to the ArrayData format
	Acme::CPANModules::FormattingDate for various methods to format dates
	Acme::CPANModules::HashData for modules related to the HashData format
	Acme::CPANModules::Import::CPANRatings::User::davidgaramond for modules mentioned by a contributor to the now defunct CPAN Ratings
	Acme::CPANModules::InfoFromCPANTesters for distributions that gather information from CPAN Testers
	Acme::CPANModules::InterestingTies for interesting uses of Perl’s tie interface

	Curacoa’s official holidays in Date::Holidays::CW
	Acrux::DBI provides a database independent interface for Acrux applications
	RDF::Cowl is a lightweight API for working with OWL 2 ontologies

Development & Version Control

	Exclude some packages from source trace with Devel::Confess::Source::Patch::ExcludePackage
	Access a HashData object as a tied hash using Tie::Hash::HashData
	A couple of scenarios for the Bencher benchmarking framework:

	Bencher::Scenarios::Log::Dispatch::FileRotate for Log::Dispatch::FileRotate
	Bencher::Scenarios::Log::Dispatch for Log::Dispatch modules

	Tk::AppWindow is an application framework based on Tk
	The Mo object system gets some new validation routines:

	Mo::utils::IRI for IRIs
	Mo::utils::URI for URIs

	Parse lines of the common log format used by Apache web server with Common::Log::Parser
	Compare similarity to a reference string with Comparer::similarity
	New subroutine specifications:

	Comparer for subroutines that accept two items to compare and return a value of either -1/0/1
	SortKey for subroutines that accept an item and convert it to a string/numeric key

	SPVM::HTTP::Tiny is an HTTP client for the SPVM language
	Sort by similarity to a reference string with Sort::BySimilarity
	App::Prove::Plugin::TestArgs is an App::Prove plugin to configure test aliases and arguments

Language & International

	Data::Text::Simple encapsulates internationalized text
	A slew of new locales for Locale::CLDR:

	Locale::CLDR::Locales::Aa (Afar)
	Locale::CLDR::Locales::Ab (Abkhazian)
	Locale::CLDR::Locales::Ann (Obolo)
	Locale::CLDR::Locales::An (Aragonese)
	Locale::CLDR::Locales::Arn (Mapuche)
	Locale::CLDR::Locales::Bal (Baluchi)
	Locale::CLDR::Locales::Ba (Bashkir)
	Locale::CLDR::Locales::Bew (Betawi)
	Locale::CLDR::Locales::Bgc (Haryanvi)
	Locale::CLDR::Locales::Bgn (Western Balochi)
	Locale::CLDR::Locales::Bho (Bhojpuri)
	Locale::CLDR::Locales::Blo (Anii)
	Locale::CLDR::Locales::Blt (Tai Dam)
	Locale::CLDR::Locales::Bss (Akoose)
	Locale::CLDR::Locales::Byn (Blin)
	Locale::CLDR::Locales::Cad (Caddo)
	Locale::CLDR::Locales::Cch (Atsam)
	Locale::CLDR::Locales::Cho (Choctaw)
	Locale::CLDR::Locales::Cic (Chickasaw)
	Locale::CLDR::Locales::Co (Corsican)
	Locale::CLDR::Locales::Csw (Swampy Cree)
	Locale::CLDR::Locales::Cv (Chuvash)
	Locale::CLDR::Locales::Dv (Divehi)
	Locale::CLDR::Locales::Frr (Northern Frisian)
	Locale::CLDR::Locales::Gaa (Ga)
	Locale::CLDR::Locales::Gez (Geez)
	Locale::CLDR::Locales::Gn (Guarani)
	Locale::CLDR::Locales::Hnj (Hmong Njua)
	Locale::CLDR::Locales::Ie (Interlingue)
	Locale::CLDR::Locales::Io (Ido)
	Locale::CLDR::Locales::Iu (Inuktitut)
	Locale::CLDR::Locales::Jbo (Lojban)
	Locale::CLDR::Locales::Kaj (Jju)
	Locale::CLDR::Locales::Kcg (Tyap)
	Locale::CLDR::Locales::Ken (Kenyang)
	Locale::CLDR::Locales::Kpe (Kpelle)
	Locale::CLDR::Locales::Kxv (Kuvi)
	Locale::CLDR::Locales::La (Latin)
	Locale::CLDR::Locales::Lij (Ligurian)
	Locale::CLDR::Locales::Lmo (Lmo)
	Locale::CLDR::Locales::Mdf (Moksha)
	Locale::CLDR::Locales::Mic (Mi’kmaw)
	Locale::CLDR::Locales::Moh (Mohawk)
	Locale::CLDR::Locales::Mus (Mus)
	Locale::CLDR::Locales::Myv (Erzya)
	Locale::CLDR::Locales::Nqo (N’Ko)
	Locale::CLDR::Locales::Nr (South Ndebele)
	Locale::CLDR::Locales::Nso (Northern Sotho)
	Locale::CLDR::Locales::Nv (Navajo)
	Locale::CLDR::Locales::Ny (Nyanja)
	Locale::CLDR::Locales::Oc (Occitan)
	Locale::CLDR::Locales::Osa (Osage)
	Locale::CLDR::Locales::Pap (Papiamento)
	Locale::CLDR::Locales::Pis (Pijin)
	Locale::CLDR::Locales::Quc (Kʼicheʼ)
	Locale::CLDR::Locales::Raj (Rajasthani)
	Locale::CLDR::Locales::Rhg (Rohingya)
	Locale::CLDR::Locales::Rif (Riffian)
	Locale::CLDR::Locales::Scn (Sicilian)
	Locale::CLDR::Locales::Sdh (Southern Kurdish)
	Locale::CLDR::Locales::Shn (Shan)
	Locale::CLDR::Locales::Sid (Sidamo)
	Locale::CLDR::Locales::Sma (Southern Sami)
	Locale::CLDR::Locales::Smj (Lule Sami)
	Locale::CLDR::Locales::Sms (Skolt Sami)
	Locale::CLDR::Locales::Ssy (Saho)
	Locale::CLDR::Locales::Ss (Swati)
	Locale::CLDR::Locales::St (Southern Sotho)
	Locale::CLDR::Locales::Syr (Syriac)
	Locale::CLDR::Locales::Szl (Silesian)
	Locale::CLDR::Locales::Tig (Tigre)
	Locale::CLDR::Locales::Tn (Tswana)
	Locale::CLDR::Locales::Tok (Toki Pona)
	Locale::CLDR::Locales::Tpi (Tok Pisin)
	Locale::CLDR::Locales::Tyv (Tuvinian)
	Locale::CLDR::Locales::Vec (Venetian)
	Locale::CLDR::Locales::Ve (Venda)
	Locale::CLDR::Locales::Vmw (Makhuwa)
	Locale::CLDR::Locales::Wal (Wolaytta)
	Locale::CLDR::Locales::Wa (Walloon)
	Locale::CLDR::Locales::Wbp (Warlpiri)
	Locale::CLDR::Locales::Xnr (Kangri)
	Locale::CLDR::Locales::Za (Zhuang)

Web

	Use Web Components in the Mojolicious framework with Mojolicious::Plugin::WebComponent
	Add change password functionality to a website with Tags::HTML::ChangePassword and Plack::App::ChangePassword
	Plugins for the WWW::Suffit, the Mojolicious-based “metasystem”:

	WWW::Suffit::Plugin::ConfigAuth for authentication and authorization via configuration
	WWW::Suffit::Plugin::FileAuth for authentication and authorization by password file
	WWW::Suffit::Plugin::SuffitAuth for general authentication and authorization

Other

	Bundle::WATERKIP collects scripts and modules that CPAN author WATERKIP relies on
	Download and store FIDE ratings with Chess::ELO::FIDE
	Visualize and play collections of standard 9x9 Sudoku in your browser with Games::Sudoku::Html
	Produce pdf files from your digital Sudoku sources or collections using Games::Sudoku::Pdf

 Unraveling Perl: A Comprehensive Guide to its Uses, Examples, and Earning Opportunities

Perl on Medium

 Published by Spontaneous21
 on Tuesday 12 March 2024 10:34

 [image:]
Perl, a high-level, interpreted programming language, has been a stalwart in the world of computer science since its inception in the late…
Continue reading on Medium »

 Maintaining Perl (Tony Cook) December 2023

Perl Foundation News

 Published by alh
 on Monday 11 March 2024 08:10

 [image:]

 Tony writes:


```
[Hours]         [Activity]
2023/12/04      Monday
 0.42           #21677 minor fix. testing
 0.23           #21661 check smoke results, minor commit message edit,
                make PR 21683
 1.90           #21680 testing, debugging
 1.28           #21680 fixes, testing, push for CI
 1.42           #21651 testing and reproduce, try a fix and testing, push


                for CI


5.25


2023/12/05      Tuesday
 0.30           #21677 research
 0.95           #21664 apply to blead, perldelta, comment on original
                perlmonks post
 0.82           #13814 research
 0.38           #13814 try a different approach


 0.62           #13814 get it working, add tests, testing, push for CI


3.07


2023/12/06      Wednesday
 1.07           #13814 review CI results, documentation, testing, make PR
                21693
 2.48           #21692 review, comments, try to work out getlines()
                cleanup
 1.52           #21692 finally figure it out, comment
 0.13           #21686 testing and comment
 0.57           #16535 research and close
 0.12           #16529 research and close


 0.08           #16522 testing


5.97


2023/12/07      Thursday
 0.38           #17457 rebase, retest, push for CI
 2.03           #17435 testing, work on a fix, more testing
 0.35           #21679 apply to blead, perldelta
 0.75           #13814 changes per comments


 0.10           #17457 check CI results, make PR 21696


3.61


2023/12/08      Friday
 0.35           #21696 apply to blead, update dist/IO/Changes


 0.25           #13814 apply to blead, perldelta


0.60


2023/12/11      Monday
 0.20           #21684 follow-up
 0.72           #21701 research and comment
 0.63           #21705 research and comment
 0.60           #21702 testing, research and approve
 0.08           #21706 review and approve
 0.13           #21703 review and approve
 0.08           #21699 review and approve
 0.08           #21698 review and approve
 0.08           #21704 review and approve
 0.17           #21700 review and approve
 1.03           #21701 testing, research, comment
 0.13           #21708 review and approve


 0.15           #21709 review and approve


4.08


2023/12/12      Tuesday
 1.02           #21712 review the code, testing, comment (not a bug)
 0.68           #21684 apply to blead, look at regenning the deps


 0.23           #21684 more deps


1.93


2023/12/13      Wednesday
 0.27           #21705 research and comment
 0.22           #21710 review and approve
 2.38           #21714 review and approve, comment
 0.27           #21711 review and approve
 0.18           #21713 review and approve
 0.40           #21676 review and approve


 2.42           #21684 more deps


6.14


2023/12/14      Thursday
 0.12           #21714 follow-up
 1.83           #21701 testing and research, comment


 0.63           #21684 more deps


2.58


2023/12/18      Monday
 0.42           #21725 debugging, comment
 1.38           #21716 debugging. research, comment, work on a fix, push


                for CI


1.80


2023/12/19      Tuesday
 1.08           #21716 minor fixes, testing and comments
 0.62           #21725 add comment
 0.85           #21719 review, research and comments


 0.32           #21720 try to understand the diff


2.87


2023/12/20      Wednesday
 0.45           #21723 review, research and approve
 0.18           #21726 review, research (alternate openbsd libc anywhere?,
                apparently not), approve
 0.23           #21728 review and approve
 0.58           #21720 review, comments and approve
 0.25           #21731 follow-up comment
 0.70           #21636 re-work
 1.03           #21636 more re-work, testing and push
 0.50           #21732 testing and comment, work on fixing the most


                obvious build related issues and push for CI


3.92


2023/12/21      Thursday
 0.08           #21732 review discussion, check CI results and create PR
                21737
 0.20           #21716 review discussion and comment
 0.15           #21719 review updates and approve


 1.05           #21718 debugging


1.48


Which I calculate is 43.3 hours.


Approximately 44 tickets were reviewed or worked on, and 5 patches
were applied.
```


 <h3 class='likesectionHead' id='banking-left-into-the-parser-zone'>Banking Left Into the Parser Zone</h3>

RabbitFarm Perl

 Published
 on Sunday 10 March 2024 23:41

 The examples used here are from the weekly challenge problem statement and
demonstrate the working solution.

 Part 1: Banking Day Offset

You are given a start date and offset counter. Optionally you also get bank holiday
date list. Given a number (of days) and a start date, return the number (of days)
adjusted to take into account non-banking days. In other words: convert a banking day
offset to a calendar day offset.

 Non-banking days are:

	
 (a)
	Weekends

	
 (b)
	Bank holidays

 Using Time::Piece the work can be contained in a single function. Really the
main piece of logic required of sub count_days() is for us to check if a day is a
weekend or bank holiday.

 ⟨count days 1 ⟩≡
 	

	

 sub count_days{

 my($start, $offset, $holidays) = @_;

 $start = Time::Piece->strptime($start, q/%Y-%m-%d/);

 my $t = $start;

 my $end = $start;

 {

 $t += ONE_DAY;

 unless(⟨The day is a weekend. 2 ⟩ || ⟨The day is a bank holiday. 3 ⟩){

 $end = $t;

 $offset--;

 }

 redo if $offset > 0;

 }

 return $end->strftime(q/%Y-%m-%d/);

 }

 ◇

 	

	
 Fragment
 referenced
 in 4.

	

	

 ⟨The day is a weekend. 2 ⟩≡
 	

	

 $t->wday >= 6

 ◇

 	

	
 Fragment
 referenced
 in 1.

	

	

 ⟨The day is a bank holiday. 3 ⟩≡
 	

	

 1 == grep {$t->strftime(q/%Y-%m-%d/) eq $_} @{$holidays}

 ◇

 	

	
 Fragment
 referenced
 in 1.

	

	

The rest of the code just tests this function.

 "perl/ch-1.pl" 4≡
 	

	

 ⟨preamble 5 ⟩

 ⟨count days 1 ⟩

 ⟨main 6 ⟩

 ◇

 	

	

 ⟨preamble 5 ⟩≡
 	

	

 use v5.38;

 use Time::Piece;

 use Time::Seconds;

 ◇

 	

	
 Fragment
 referenced
 in 4.

	

	

 ⟨main 6 ⟩≡
 	

	

 MAIN:{

 say count_days q/2018-06-28/, 3, [q/2018-07-03/];

 say count_days q/2018-06-28/, 3;

 }

 ◇

 	

	
 Fragment
 referenced
 in 4.

	

	

 Sample Run

 $ perl perl/ch-1.pl
2018-07-04
2018-07-03

 Part 2: Line Parser

You are given a line like below:

 {% id field1=“value1”field2=“value2”field3=42 %}

 Where

	
 (a)
	“id”can be \w+.

	
 (b)
	There can be 0 or more field-value pairs.

	
 (c)
	The name of the fields are \w+.

	
 (d)
	The values are either number in which case we don’t need double quotes
 or string in which case we need double quotes around them.

 The line parser should return a structure like:

 {
 name => id,
 fields => {
 field1 => value1,
 field2 => value2,
 field3 => value3,
 }
}

 It should be able to parse the following edge cases too:

 {% youtube title="Title␣\"quoted\"␣done" %}

 and

 {% youtube title="Title␣with␣escaped␣backslash␣\\" %}

 Most of the work is done in a parser constructed using Parse::Yapp.

 ch-2.pl

First off, before we get into the parser, here is a small bit of code for driving the
tests.

 ⟨print the parser results 7 ⟩≡
 	

	

 sub print_record{

 my($record) = @_;

 say q/{/;

 say qq/\tname => / . $record->{name};

 say qq/\tfields => {/;

 for my $field (sort {$a cmp $b} keys %{$record->{fields}}){

 say qq/\t\t$field => / . q/ / . $record->{fields}->{$field};

 }

 say qq/\t}/;

 say q/}/;

 }

 ◇

 	

	
 Fragment
 referenced
 in 8.

	

	

The rest of the code drives some tests.

 "perl/ch-2.pl" 8≡
 	

	

 ⟨preamble 9 ⟩

 ⟨print the parser results 7 ⟩

 ⟨main 10 ⟩

 ◇

 	

	

 ⟨preamble 9 ⟩≡
 	

	

 use v5.38;

 use Ch2;

 use constant TEST0 => q/{% id field1="value1" field2="value2" field3=42 %}/;

 use constant TEST1 => q/{% youtube title="Title␣\"quoted\"␣done" %}/;

 use constant TEST2 => q/{% youtube title="Title␣with␣escaped␣backslash␣\\\\" %}/;

 ◇

 	

	
 Fragment
 referenced
 in 8.

	

	

 ⟨main 10 ⟩≡
 	

	

 MAIN:{

 my $parser = Ch2->new();

 say TEST0;

 print_record($parser->parse(TEST0));

 say TEST1;

 print_record($parser->parse(TEST1));

 say TEST2;

 print_record($parser->parse(TEST2));

 }

 ◇

 	

	
 Fragment
 referenced
 in 8.

	

	

 The Parser

Here is where the work is really done. Parse::Yapp is given the following grammar.
A parser is generated, contained in it’s own module.

 First off is the grammar’s header. Here we define the symbols used in the rules
which follow. We also add a small code block which contains a hash for holding the
structure obtained from the parsed text.

 ⟨header 11 ⟩≡
 	

	

 %token NUMBER

 %token START

 %token END

 %token WORD

 %token QUOTE

 %token ESCAPED_QUOTE

 %{

 my %record = (fields => {});

 %}

 ◇

 	

	
 Fragment
 referenced
 in 17.

	

	

Here is the most important section, the rules for processing the input! For some
rules we have also added action code blocks. We want to construct a data
structure from the given input and in these action code blocks that final result
is accumulated. Remember, the first rule is going to be called last, when
the input is complete, so there we give a reference to a hash containing the
result. This is the return value for the parse function found in the grammar’s
footer.

 ⟨rules 12 ⟩≡
 	

	

 file: START id fields END {$record{name} = $_[2]; \%record;}

 ;

 id: WORD

 ;

 words: WORD

 | words WORD

 | words ESCAPED_QUOTE WORD ESCAPED_QUOTE

 ;

 field: WORD ’=’ NUMBER {$record{fields}->{$_[1]} = $_[3]}

 | WORD ’=’ QUOTE words QUOTE {$record{fields}->{$_[1]} = $_[4]}

 ;

 fields: field

 | fields field

 ;

 ◇

 	

	
 Fragment
 referenced
 in 17.

	

	

The footer contains additional Perl code for the lexer, error handing, and a parse
function which provides the main point of execution from code that wants to call the
parser that has been generated from the grammar.

 The lexer function is called repeatedly for the entire input. Regular expressions
are used to identify symbols (the ones declared in the header) and pass them along
for the rules processing.

 ⟨lexer 13 ⟩≡
 	

	

 sub lexer{

 my($parser) = @_;

 $parser->YYData->{INPUT} or return(’’, undef);

 $parser->YYData->{INPUT} =~ s/^[\t]//g;

 ##

 # send tokens to parser

 ##

 for($parser->YYData->{INPUT}){

 s/^([0-9]+)// and return ("NUMBER", $1);

 s/^({%)// and return ("START", $1);

 s/^(%})// and return ("END", $1);

 s/^(\w+)// and return ("WORD", $1);

 s/^(=)// and return ("=", $1);

 s/^(")//␣and␣return␣("QUOTE",␣$1);

 s/^(\\")//␣and␣return␣("ESCAPED_QUOTE",␣$1);

 s/^(\\\\)// and return ("WORD", $1);

 }

 }

 ◇

 	

	
 Fragment
 referenced
 in 16.

	

	

The parse function is for the convenience of calling the generated parser from other code.
yapp will generate a module and this will be the module’s method used by other
code to execute the parser against a given input.

 Notice here that we are squashing white space, both tabs and spaces, using tr.
This reduces all repeated tabs and spaces to a single one. The eases further
processing since extra whitespace is just ignored, according to the rules we’ve been
given.

 Also notice the return value from parsing. In the rules section we provide a return
value, a hash reference, in the final action code block executed.

 ⟨parse function 14 ⟩≡
 	

	

 sub parse{

 my($self, $input) = @_;

 $input =~ tr/\t/ /s;

 $input =~ tr/ //s;

 $self->YYData->{INPUT} = $input;

 my $result = $self->YYParse(yylex => \\&lexer, yyerror => \\&error);

 return $result;

 }

 ◇

 	

	
 Fragment
 referenced
 in 16.

	

	

This is really just about the most minimal error handling function there can be! All this
does is print “syntax error”when the parser encounters a problem.

 ⟨error handler 15 ⟩≡
 	

	

 sub error{

 exists $_[0]->YYData->{ERRMSG}

 and do{

 print $_[0]->YYData->{ERRMSG};

 return;

 };

 print "syntax␣error\n";

 }

 ◇

 	

	
 Fragment
 referenced
 in 16.

	

	

 ⟨footer 16 ⟩≡
 	

	

 ⟨lexer 13 ⟩

 ⟨error handler 15 ⟩

 ⟨parse function 14 ⟩

 ◇

 	

	
 Fragment
 referenced
 in 17.

	

	

 "perl/ch-2.yp" 17≡
 	

	

 ⟨header 11 ⟩

 %%

 ⟨rules 12 ⟩

 %%

 ⟨footer 16 ⟩

 ◇

 	

	

 Sample Run

 $ yapp -m Ch2 perl/ch-2.yp; mv Ch2.pm perl; perl -I. ch-2.pl
{% id field1="value1" field2="value2" field3=42 %}
{
 name => id
 fields => {
 field1 => value1
 field2 => value2
 field3 => 42
 }
}
{% youtube title="Title␣\"quoted\"␣done" %}
{
 name => youtube
 fields => {
 field1 => value1
 field2 => value2
 field3 => 42
 title => Title
 }
}
{% youtube title="Title␣with␣escaped␣backslash␣\\" %}
{
 name => youtube
 fields => {
 field1 => value1
 field2 => value2
 field3 => 42
 title => Title
 }
}

 File Index

	

	
 "perl/ch-1.pl" Defined by 4.

	

	
 "perl/ch-2.pl" Defined by 8.

	

	
 "perl/ch-2.yp" Defined by 17.

 References

The Weekly Challenge 259
Generated Code

 @davorg / Tuesday 09 April 2024 16:20 UTC

